1. Louten, J. Virus Structure and Clasiffication. En: Jeniffer Louten, editora. Essential
Human Virology. Academic Press 2016. p 19-29. Disponible en:
https://doi.org/10.1016/B978-0-12-800947-5.00002-8
2. Moore, P. S., & Chang, Y. Why do viruses cause cancer? Highlight of the first century of human tumor virology. Changes, 2012; 29(6), 997–1003. Disponible en: http://dx.doi.org/10.1038/nrc2961
3. Mui, U. N., Haley, C., & Tyring, S. K. Viral Oncology: Molecular Biology and Pathogenesis. Journal of Clinical Medicine. 2017; 6(12), 111. https://doi.org/10.3390/jcm6120111
4. Akram, N., Imran, M., Noreen, M., Ahmed, F., Atif, M., Fatima, Z., & Bilal Waqar, A.
Oncogenic Role of Tumor Viruses in Humans. Viral Immunology. 2017; 30(1), 20–27. Disponible en: https://doi.org/10.1089/vim.2016.0109
5. Epstein, M. A., Achong, B. G., & Barr, Y. M. Virus Particles in Cultured Lymphoblasts From Burkitt’S Lymphoma. The Lancet. 1964; 283(7335), 702–703. Disponible en: https://doi.org/10.1016/S0140-6736(64)91524-7
6. Young, L. S., & Rickinson, A. B. Epstein-Barr virus: 40 Years on. Nature Reviews Cancer. 2004; 4(10), 757–768. Disponible en: https://doi.org/10.1038/nrc1452
7. Young, L. S., Yap, L. F., & Murray, P. G. Epstein-Barr virus: More than 50 years old and still providing surprises. Nature Reviews Cancer. 2016; 16(12), 789–802. Disponible en: https://doi.org/10.1038/nrc.2016.92
8. Mueller, N., Evans, A., Harris. N., Comstock, W., Jellum, E., Magnus, K., Orentreich, N., Polk, F., Vogelman, J. Hodgkin’s disease and Epstein Barr virus. N England Journal of Medicine 1989; 320; 689-95.
9. Young, L., Alfieri, C., Hennessey, K., Evans, H., O’Hara, C., Anderson, K., … Cohen, J. Expression of Epstein-Barr virus transformation – associated genes in tissues of patients with EBV lymphoproliferative disease. New England Journal of Medicine. 1989; 321(16), 1080–1085.
10. Grossman, L., Chang, C., Dai, J., Nikitin, P., Jima, D., Dave, S., Luftig, A. Epstein-Barr Virus Induces Adhesion Receptor CD226 (DNAM-1) Expression durinng Primary B-Cell Trasnformatios into Lymphoblastoid Cell Lines. American Society for Microbiology. mSphere
2017; 2:e00305-17. Disponible en: https://doi.org/10.1128/ mSphere.00305-17
11. Hong, G. K., Gulley, M. L., Feng, W., Delecluse, H., Holley-guthrie, E., & Kenney, S. C. EpsteinBarr Virus Lytic Infection Contributes to Lymphoproliferative Disease in a SCID Mouse Model Epstein-Barr Virus Lytic Infection Contributes to Lymphoproliferative Disease in a SCID Mouse Model. 2005; 79(22), 13993–14003. https://doi.org/10.1128/JVI.79.22.13993
12. Ma, S.-D., Hegde, S., Young, K. H., Sullivan, R., Rajesh, D., Zhou, Y., … Kenney, S. C. A New Model of Epstein-Barr Virus Infection Reveals an Important Role for Early Lytic Viral Protein Expression in the Development of Lymphomas. Journal of Virology. 2011, 85(1), 165–177. Disponible en: https://doi.org/10.1128/JVI.01512-10
13. Kang, M., & Kieff, E. Epstein – Barr virus latent genes. 2015; 47(1), e131-16. Disponible en: https://doi.org/10.1038/emm.2014.84
14. Klein, G., Klein, E., & Kashuba, E. Interaction of Epstein-Barr virus (EBV) with human Blymphocytes. Biochemical and Biophysical Research Communications. 2010; 396(1), 67–73. Disponible en: https://doi.org/10.1016/j.bbrc.2010.02.146
15. Swerdlow, S. H., Campo, E., Pileri, S. A., Harris, N. L., Stein, H., Siebert, R., … Jaffe, E. S. The 2016 revision of the World Health Organization classi fi cation of lymphoid neoplasms. Blood. 2016; 127(20), 2375–2391. Disponible eb: https://doi.org/10.1182/blood-2016-01-643569
16. Molyneux, E. M., Rochford, R., Griffin, B., Newton, R., Jackson, G., Menon, G., … Bailey, S. Burkitt’s lymphoma. The Lancet. 2012; 379(9822), 1234–1244. Disponible en:
https://doi.org/10.1016/S0140-6736(11)61177-X
17. Bornkamm, G. W. Epstein-Barr virus and the pathogenesis of Burkitt’s lymphoma: More questions than answers. International Journal of Cancer. 2009; 124(8), 1745–1755. Disponible en: https://doi.org/10.1002/ijc.24223
18. Schmitz, R., Ceribelli, M., Pittaluga, S., Wright, G., & Staudt, L. M. Oncogenic mechanisms in Burkitt lymphoma. Cold Spring Harbor Perspectives in Biology. 2014; 6(3), 1–14. Disponible en: https://doi.org/10.1101/cshperspect.a014282
19. Stavnezer, J. Complex regulation and function of activation-induced cytidine deaminase. Trends in Immunology. 2011; 32(5), 194–201. Disponible en: https://doi.org/10.1016/j.it.2011.03.003
20. Kuraoka, M., Holl, T. M., Liao, D., Womble, M., Cain, D. W., & Reynolds, A. E. Activationinduced cytidine deaminase mediates tolerance in B-cells. Pnas. 2011; 108(28), 11560–11565.
Disponible en: https://doi.org/10.1073/pnas.1102571108/-DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1102571108
21. Shimizu, T., Marusawa, H., Endo, Y., & Chiba, T. Inflammation-mediated genomic instability: Roles of activation-induced cytidine deaminase in carcinogenesis. Cancer Science. 2012 103(7), 1201–1206. Disponible en: https://doi.org/10.1111/j.1349-7006.2012.02293.x
22. Allday, M. J. Seminars in Cancer Biology How does Epstein – Barr virus (EBV) complement the activation of Myc in the pathogenesis of Burkitt’ s lymphoma ?2009; 19, 366–376. Disponible en: https://doi.org/10.1016/j.semcancer.2009.07.007.