Drepanocitosis: reseña de un siglo de investigación

Autores

Francisco Hernández Chavarria

RESUMEN

El objetivo de este trabajo es brindar una visión del desarrollo científico y tecnológico de la anemia falciforme desde su primera descripción a principios del siglo XX hasta los retos actuales. Esta se trata de una enfermedad asociada a una compleja nebulosa de síntomas, cuyo hallazgo patognomónico son los eritrocitos en forma de hoz. La interpretación errónea de los primeros hallazgos condujo a sospechar que se trataba de una enfermedad exclusiva de afrodescendientes y que se transmitía como herencia dominante mendeliana; sin embargo, es recesiva, pero constituye una de las hemoglobinopatías de mayor prevalencia mundial. Descrita en la década de 1940 como la primera enfermedad molecular, causada por una mutación puntual que conduce a la sustitución de un aminoácido en la molécula de globina. Dos de los hallazgos más importantes en esta enfermedad son el tratamiento exitoso de las crisis de dolor empleando hidroxiurea y el hecho de que intervenciones simples, como el consejo genético, la vacunación contra Haemophylus influenzae y la antibióticoterapia preventiva, entre otros, permiten expectativas de vida que exceden los 50 años, y eso es posible cuando se realiza el diagnóstico en el recién nacido, lo que justifica los programas de tamizaje neonatal. Como conclusión, la ciencia médica actualmente tiene como reto la cura de la drepanocitosis, y el trasplante de médula ósea se ha confirmado como una opción real; adicionalmente, es posible que la modificación genética de células madre sea la estrategia futura.

Palabras clave

Hemoglobina S, anemia de células falciformes, drepanocitosis, hemoglobinopatías, tamizaje neonatal.

ABSTRACT

The aim of this paper is to provide a vision of the scientific development of Sickle cell anemia since its early descriptions at the beginning of 20th century to the current challenge. This disease is associated with a complexity of symptoms, in which the sickle-shaped erythrocytes is a pathognomonic laboratory finding. Misinterpretation of the first findings led to suppose that it was exclusively of Afro-descendants and transmitted as a dominant Mendelian inheritance; however, it is recessive, and it is one of the most worldwide prevalent hemoglobinopathies. It was described in the 1940s as the first molecular disease, caused by a punctual mutation leading to a substitution of an amino acid in the globin molecule. The most important findings in this disease are the successful pain relief crises using hydroxyurea, and the fact that simple interventions, such as genetic counseling, vaccination against Haemophylus influenzae, and preventive antibiotic therapy, among others, allows a life expectancy over 50 years. That is possible when the disease is diagnosed in newborns, so, it justifies the neonatal screening programs. As conclusion, the new challenge is the cure and bone marrow transplantation which represent a god option; also, it is possible that genetic modification of stem cells could be a future strategy.

Keywords

Hemoglobin S, sickle cell disease, sickle cell anemia, hemoglobinopathies, neonatal screening.
1. Shriner D, Rotimi CN. Whole-genome-sequence-based haplotypes reveals single origin of the sickle allele during Holocene wet phase. Amer J Human Gen. 2018; 102(4): 547–556. 2. Siddiqi AEA, Jordan LB, Parker CS. Sickle cell disease – the american saga. Ethn Dis. 2013; 23(2): 245-248. 3. Piel FB, Hay SI, Gupta S, Weatherall DJ, Williams TN. Global burden of sickle cell anaemia in children under five, 2010–2050: Modelling based on demographics, excess mortality, and interventions. PLoS Med. 2013;10(7). Recuperado de: doi:10.1371/journal.pmed.1001484 [Consultado 1 de diciembre 2019]. 4. Asakitikpi AE. Born to Die: The Ogbanje Phenomenon and its Implication on Childhood Mortality in Southern Nigeria. Anthropologist. 2008; 10(1): 59-63. 5. Makani J, Cox SE, Soka D, Komba AN, Oruo J, Mwarmtemi H, et al. Mortality in sickle cell anemia in Africa: A prospective cohort study in Tanzania. PLoS ONE. 2011; 6(2). Recuperado de: doi:10.1371/journal.pone.0014699 [Consultado: 1 de diciembre 2019]. 6. Wierenga K JJ, Hambleton IR, Lewis NA. Survival estimates for patients with homozygous sickle-cell disease in Jamaica: a clinic-based population study. Lancet. 2001; 357(9257):680-683. 7. World Health Organization. Sickle-cell anaemia. Fifty-ninth World Health Assembly, provisional agenda Item 11.4. 2006; A59:1. Recuperado de: http://www. who.int/gb/ebwha/pdf_files/WHA59/A59_9-en. Pdf [Consultado: Julio 06 2018]. 8. Weatherall DJ, Clegg JB. Inherited haemoglobin disorders: an increasing global health problem. Bull WHO. 2001; 79(8): 704–712. 9. Wearherall DJ. Towards molecular medicine; reminiscences of the haemoglobin field, 1960–2000. Brit J Haematol. 200; 115(4): 721-738. 10. Wearherall DJ. The inherited diseases of hemoglobin are an emerging global health burden. Blood. 2010; 115(22): 4331–4336. 11. Knight-Madden J, Lee K, Elana G, Elenga N, Marcheco-Teruel B, Keshi N, et al. Newborn screening for sickle cell disease in the Caribbean: An update of the present situation and of the disease prevalence. Int J Neonatal Screen. 2019; 5(1): 5-14. Recuperado de: doi:10.3390/ijns5010005 [Consultado: 3 febrero 2020]. 12. Serjeant GR. The emerging understanding of sickle cell disease. Brit J Haematol. 2001; 112(1): 3-18. 13. Feldman SD, Tauber AI. Sickle cell anemia: reexamining the first ‘molecular disease’. Bull Hist Med. 1997; 71(4): 623-650. 14. Dresbach M. Elliptical human red corpuscles. Science. 1904 ; 19(481): 469-470. 15. Dresbach M. Elliptical human red erythrocytes (A supplementary statements). Science. 1905; 21(534): 473-475. 16. Mason VR. Sickle cell anemia. JAMA. 1922; 79(16):1318-1320. 17. Huck JG. Sickle Cell Anaemia. Bull Johns Hopkins Hosp. 1923; 34(392): 335-344. 18. Scriver JB, Waugh TR. Studies on a case of sickle cell anemia. Can Med Assoc J. 1930; 23(3): 375-380. 19. Diggs KW, Ahmann CF, Bibb J. The incidence and significance of the sicke cell trait. Ann Int Med. 1933; 7(6): 769-778. 20. Neel JV. The clinical detection of the genetic carriers of inherited disease. Medicine. 1947; 26(2): 115-153. 21. Neel JV. The Inheritance of Sickle Cell Anemia. Science. 1949; 110(2846): 64-66. 22. Foy H, Kondi A, Brass W. Sickle-cell disease of Africans in Kenya. East Afr Med J. 1951; 28(1): 1-5. 23. Elrod JM, Karnad EA. Historical Review.William Bosworth Castle: Pioneer of haematological clinical investigation. Brit J Haematol. 2003; 121: 390-395. 24. Eaton WA. Linus Pauling and sickle cell disease. Bioph Chem. 2003 D; 100(1-3): 109-116. 25. Strasser BJ. Linus Paulin’s “Molecular disease”: Between history and memory. Amer J Med Gen (Semin Med Genet). 2002; 115(2): 83-93. 26. Pauling L, Itano HA, Singer SJ, Wells IC. Sickle cell anemia, a molecular disease. Science, New Series. 1949; 110(2865): 543-548. 27. Daland GA, Castle WB. A simple and rapid method for demonstrating sickling of the red blood cells: The use of reducing agents. J Lab Clin Med. 1948; 33(9): 1082-1088. 28. Ingram VM. A specific chemical difference between the globins of normal human and sickle-cell anaemia haemoglobin. Nature. 1956; 178 (4537): 792-794. 29. Marenco-Rowe AJ. Structure-function relations of human hemoglobins. Bailor Univ Med Center Proc. 2006; 19(3): 239-245. 30. Dacie J. Hermann Lehmann 8 July 1910-13 July 1985. Biograph Mem Fellows R Soc. 1988; 34: 406-449. 31. Beadle D, Lehmann H. Abnormal haemoglobins and the genetic code. Nature. 1965; 207(4994): 259-261. 32. Watson J, Stahman AW, Bilello FP. The significance of the paucity of sickle cells in newborn negro infants. Amer J Med Sci. 1948; 215(4): 419-423. 33. Akinsheye I, Alsultan A, Solovieff N, Ngo D, Baldwin CT, Sebastiani P, et al. Fetal hemoglobin in sickle cell anemia. Blood. 2011; 118 (1):19-27. 34. Desimone J, Heller P, Hall L, Zwiers D. Azacytidine stimulates fetal hemoglobin synthesis in anemic baboons (globin genes/hypomethylation/cytidine analogue/gene expression). Proc Natl Acad Scs USA. 1982; 79(14): 4428-4431. 35. Humphnes RK, Dover G, Young NS, Moore JG, Charache S, Ley T, et al. 5-Azacytidine acts directly on both erythroid precursors and progenitors to increase production of fetal hemoglobin. J Clin Invest. 1985; 75(2): 547-557. 36. Platt OS, Orkin SH, Dover G, Beardsley GP, Miller B, Nathan DG. Hydroxyurea enhances fetal hemoglobin production in sickle cell anemia. J Clin Invest. 1984 Aug 1; 74(2): 652-656. 37. Charache S, Dover GJ, Moore RD, Eckert S, Ballas SK, Kshy M, et al. Hydroxyurea: effects on hemoglobin F production in patients with sickle cell anemia. Blood. 1992; 79(10): 2555-2565. 38. Charache S, Terrin ML, Moore RD, Dover GJ, Barton FB, Eckert SV, et al. Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. Investigators of the Multicenter Study of Hydroxyurea in Sickle Cell Anemia. N Engl J Med. 1995; 332(20): 1317-1322. 39. Steinberg MH, Barton F, Castro O, Pegelow CH, Ballas SK, Kutlar A, et al. Effect of hydroxyurea on mortality and morbidity in adult sickle cell anemia: risks and benefits up to 9 years of treatment. JAMA. 2003; 289(13): 1645-1651. 40. Platt OS. Hydroxyurea for the treatment of sickle cell anemia. N Engl J Med. 2008; 358(13): 1362-1369. 41. Modell B, Darlison M. Global epidemiology of haemoglobin disorders and derived service indicators. Bull WHO. 2008; 86(6): 480-487. 42. Grosse SD, Odame I, Atrash HK, Amendah DD, Piel FB, Williams TN. Sickle cell disease in Africa. A neglected cause of early childhood mortality. Am J Prev Med. 2011; 41(6): S398-S405. 43. King L, Fraser R, Forbes M, Grindley M, Ali S, Reid M. Newborn sickle cell disease screening: the Jamaican experience (1995-2006). J Med Screen. 2007; 14(3): 117–122. 44. Grover R, Shahidi S, Fisher B, Goldberg D, Wethers D. Current sickle cell screening program for newborns in New York City, 1979-1980. Amer J Public Healt. 1983; 73(3): 249-252. 45. Campbell M, Henthorn JS, C. Davies SC. Evaluation of cation-exchange HPLC compared with isoelectric focusing for neonatal hemoglobinopathy screening. Clin Chem. 1999; 45(7): 969-975. 46. Bardakdjian-Michau J, Bahuau M, Hurtrel D, Godart C, Riou J, Mathis M, et al. Neonatal screening for sickle cell disease in France. J Clin Pathol. 2009; 62(1): 31-33. 47. Ducrocq R, Pascaud O, Bévier A, Finet C, Benkerrou M, ElionJ. Strategy linking several analytical methods of neonatal screening for sickle cell disease. J Med Screen. 2001; 8(1): 8-14. 48. Streetly A, Latinovic R, Hall K, Henthorn J. Implementation of universal newborn bloodspot screening for sickle cell disease and other clinically significant haemoglobinopathies in England: screening results for 2005–7. J Clin Pathol. 2009; 62(1): 26-30. 49. Huttle A, Maestre GE, Lantigua R, Green NS. Sickle cell in Latin America and the United States [corrected]. Pediatr Blood Cancer. 2015; 62(7):1131-1136. 50. Granda H, Gispert S, Dorticos A, Martin, Cuadras Y, Calvo M, et al. Cuban program for prevention of sickle cell disease. Lancet. 1991; 337(8734): 152-315. 51. Dauphin-McKenzie N, Gilles JM, Jacques E, Harrington T. Sickle cell anemia in the female patient. Obstet Gyneco Survey. 2006; 61(5): 343-352. 52. Heyningen AM, Levenston MJ, Tamminga N, Scoop-Martijn EG, Wever RMF, Verhagen AAE, et al. Estimated incidence of sickle-cell disease in Aruba and St Maarten suggests cost-effectiveness of a Universal Screening Programme for St Marteen. West Indian Med J. 2009; 58(4): 301-304. 53. Knight-Madden J, Villaescusa R, Keclard-Christophe L, Elana G, Lee K, Elenga L. et al. “CAREST”- Caribbean network of researchers on sickle cell disease and thalassemia: a regional organisation for health promotion and research. Caribbean Science and Innovation Meeting 2019. 2019, Pointe-à-Pitre (Guadeloupe), France. 54. Noguera N, Bragós I, Morisoli L, Milani A. Screening for hemoglobinopathies in neonates in Argentina. Haematologica. 1999; 84(5): 387-389. 55. Kleidermacher G, «Africanos y afrodescendientes en la Argentina: invisibilización, discriminación y racismo », RITA. 2011; 5. Recuperado de: http://www.revue-rita.com/traits-dunion-thema-59/africanos-y-afrodescendientes-en-la-argentina-invisibilizacion-discriminacion-y- racismo.html [Consultado: 15 Enero 2020]. 56. Vermylen C, Fernandez-Robles E, Ninane J, Cornu G. Bone marrow transplantation in five children with sickle cell anaemia. Lancet. 1988; 1(8600): 1427-1428. 57. Walters MC. Bone marrow transplantation for sickle cell disease: Where do we go from here. J Pediatr Hematol Oncol. 1999; 21(6): 467-474. 58. Johnson FL, Look AT, Gookerman J, Ruggiero MR, Dalla-Pozza L, Billings FT. Bone marrow transplantation in a patient with sickle-cell anemia. N Engl J Med. 1984; 311(12): 380-383. 59. Brachet C, Heinrichs C, Tenoutasse S, Devalck C, MD, Azzi N, Ferster A. Children with sickle cell disease: Growth and gonadal function after hematopoietic stem cell transplantation. J Pediatr Hematol Oncol. 2007; 29(7): 445–450. 60. Gluckman E. Allogeneic transplantation strategies including haploidentical transplantation in sickle cell disease. Hematology Am Soc Hematol Educ Program. 2013; 2013(1): 370-376. 61. Gluckman E, Cappelli B, Bernaudin F, Labopin M, Volt F, Carreras J. et al. Sickle cell disease: an international survey of results of HLA-identical sibling hematopoietic stem cell transplantation. Blood. 2017; 129 (11): 1548-1556. 62. Bernaudin F, Dalle JH, Bories D, de Latour R, Robin M, Bertrand Y, et al. Long-term event-free survival, chimerism and fertility outcomes in 234 patients with sickle-cell anemia younger than 30 years after myeloablative conditioning and matched-sibling transplantation in France. Haematologica. 2020;105(1): 91-101. 63. Cyranoski D. Stem cells: 5 things to know before jumping on the iPS bandwagon. Nature. 2008; 452(7186): 406-408. 64. Liu SV. iPS: A more critical review. Stem Cell Develop. 2008 Jun; 17(3): 391-397. 65. Pawliuk R, Westerman KA, Fabry ME, Payen E, Tighe R, Bouhassira EE, et al. Correction of sickle cell disease in transgenic mouse models by gene therapy. Science. 2001; 294(5550): 2368-2371. 66. Hoban MD, Cost G J, Mendel M C, Romero Z, Kaufman M L, Joglekar AV, et al. Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells. Blood. 2015; 125(17): 2597-2604. 67. Bourzac, K. Gene therapy: Erasing sickle-cell disease. Nature. 2017; 549 (7673): S28–S30. 68. Alapan Y, Fraiwan A, Kucukal E, Hasan MN, Ung R, Kim M, et al. Emerging point-of-care technologies for sickle cell disease screening and monitoring. Experts Review of Medical Devices. 2016; 13(12): 1073-1093. 69. Yang X, Piety NZ, Vignes SM, Benton MS, Kanter J, Shevkoplyas SS. Simple paper-based test for measuring blood hemoglobin concentration in resource-limited settings. Clin Chem. 2013; 59(10): 1506-1513. 70. Yang X, Kanter J, Piety NZ, Benton MS, Vignes SM, Shevkoplyas SS. A simple, rapid, low-cost diagnostic test for sickle cell disease. Lab Chip. 2013; 13(8): 1464-1467. 71. Piety NZ, Yang X, Lezzar D, George A, Shevkoplyas SS. A rapid paper‐based test for quantifying sickle hemoglobin in blood samples from patients with sickle cell disease. Am J Hematol. 2015; 90(6): 478-482. 72. Piety NZ, George A, Serrano S, Lanzi MR, Patel PR, Noli MP, et al. A paper-based test for screening newborns for sickle cell disease. Sci Rep. 2017; 7: 45488. Recuperado de: https://doi.org/10.1038/srep45488. [Consultado: 17 diciembre de 2019]. 73. O´Farrell B. Evolution in lateral flow-based immunoensay system. En: Wong RC, Tse HY (Eds.). Lateral flow immunoassay. Springer, New York; 2009, p. 1-33. 74. Kanter J, Telen MJ, Hoppe C, Christopher L, Roberts L, Jason S, et al. Validation of a novel point of care testing device for sickle cell disease. BMC Med. 2015; 13 (1): 225 Recuperado de: doi: 10.1186/s12916-015-0473-6 [Consultado: 1 diciembre de 2019]. 75. Quinn CT, Paniagua MC, DiNello RK, Panchal A, Geisberg
M. A rapid, inexpensive and disposable point-of-care blood test for sickle cell disease using novel, highly specific monoclonal antibodies. Br J Haematol. 2016; 175(4): 724-732. 76. Kumar AA, Patton MR, Hennek JW, Lee SYR, D’Alesio-Spina G, Yang X, et al. Density-based separation in multiphase systems provides a simple method to identify sickle cell disease. Proc Natl Acad Sci U S A. 2014; 111(41): 14864-14869. 77. Kumar AA, Chunda-Liyoka C, Hennek JW, Mantina H, Lee SYR, et al. Evaluation of a Density-Based Rapid Diagnostic Test for Sickle Cell Disease in a Clinical Setting in Zambia. PLoS ONE. 2014; 9(12): e114540. Recuperado de: doi: 10.1371/journal.pone.0114540. PMID: 25490722; PMCID: PMC4260838. 14540 [Consultado: 15 de enero de 2020]. 78. Fraiwan A, Hasan MN, An R, Xu JZ, Rezac AJ, Kocmich NJ, et al. International Multi-Site Clinical Validation of Point-of-Care Microchip Electrophoresis Test for Hemoglobin Variant Identification. Blood. 2019; 134 (Supplement_1): 3373. Recuperado de : https://doi.org/10.1182/blood-2019-129336 [Consultado: 15 diciembre de 2019]. 79. Thiel y Hoffmann, Bernardo Augusto, Monografía de la población de la República de Costa Rica en el siglo XIX. Población y Salud en Mesoamérica [Internet]. 2011;9(1):1-54. Recuperado de: https://www.redalyc.org/articulo.oa?id=44618728002 [Consultado 1 de junio de 2020]. 80. Molina-Jiménez I. Costarricense por dicha. Identidad nacional y cambio cultural en la Costa Rica durante los siglos XIX y XX. San José: Editorial UCR; 2022. p 170 81. Abarca G, Navarrete M, Trejos R, de Céspedes C, Saborío M. Hemoglobinas anormales en población de Costa Rica. Revista de Biología Tropical. 2008; 56(3): 995-1001. 82. Morera B, Barrantes R, Marin-Rojas R. Gene Admixture in the Costa Rican Population. Ann Hum Genet. 2004; 67(1): 71–80. 83. Campos-Sánchez R, Raventós H, Barrantes R. Ancestry informative markers clarify the regional admixture variation in the Costa Rican Population. Human Biology Open Access Pre-Prints. 2013 Paper 34. Recuperadso de: http://digitalcommons.wayne.edu/humbiol_preprints/34 [Consultado: 15 enero 2020]. 84. Frédéric B Piel, Andrew J Tatem, Zhuojie Huang, Sunetra Gupta, Thomas N Williams, David J Weatherall Global migration and the changing distribution of sickle haemoglobin: a quantitative study of temporal trends between 1960 and 2000. Lancet Glob Health. 2014, (2)2.