Virus Epstein Barr: primer oncovirus humano descubierto y su relación con el desarrollo de enfermedades hematooncológicas como el Linfoma de Burkitt.

Inicio>>Volumen>>Vol 25, N ° 2 mayo – agosto 2019>>Virus Epstein Barr: primer oncovirus humano descubierto y su relación con el desarrollo de enfermedades hematooncológicas como el Linfoma de Burkitt.

Virus Epstein Barr: primer oncovirus humano descubierto y su relación con el desarrollo de enfermedades hematooncológicas como el Linfoma de Burkitt.


Autores


Luisa Alejandra Vindas-Angulo

Resumen


El descubrimiento de la relación entre procesos infecciosos virales y el desarrollo de enfermedades oncológicas tiene más de un siglo de conocerse. Al inicio estos sólo fueron de interés para elucidar enfermedades que afectaban animales domésticos; sin embargo con el paso de los años se realizaron otras investigaciones que buscaban atribuirle un origen infeccioso a cierto tipos de cáncer en humanos. El virus del Epstein Barr es un oncovirus y su asociación con el Linfoma de Burkitt fue descubierta casi al mismo momento en el que este fue descrito por primera vez. Los genes que permiten la latencia de Epstein Barr son los principalmente relacionados con el desarrollo de ésta y otras patologías hematooncológicas.

Palabras clave

Oncovirus, Epstein Barr, oncogenes, linfoma de Burkitt

Abstract


The discovery of the relationship between viral infectious processes and the development of oncological diseases has been known for more than a century. At first, these were only of interest for elucidating diseases affecting domestic animals; however, over the years, other research was carried out that sought to attribute an infectious origin to certain types of cancer in humans.  The Epstein Barr virus is an oncovirus and its association with Burkitt’s lymphoma was discovered at about the same time it was first described. The genes that allow the latency of Epstein Barr are those mainly related to the development of this and other hematooncological pathologies.


Key words

Oncovirus, Epstein Barr, oncogenes, Burkitt's lymphoma

Texto completo

VER PDF



Referencias

1. Louten, J. Virus Structure and Clasiffication. En: Jeniffer Louten, editora. Essential
Human Virology. Academic Press 2016. p 19-29. Disponible en:
https://doi.org/10.1016/B978-0-12-800947-5.00002-8
2. Moore, P. S., & Chang, Y. Why do viruses cause cancer? Highlight of the first century of human tumor virology. Changes, 2012; 29(6), 997–1003. Disponible en: http://dx.doi.org/10.1038/nrc2961
3. Mui, U. N., Haley, C., & Tyring, S. K. Viral Oncology: Molecular Biology and Pathogenesis. Journal of Clinical Medicine. 2017; 6(12), 111. https://doi.org/10.3390/jcm6120111
4. Akram, N., Imran, M., Noreen, M., Ahmed, F., Atif, M., Fatima, Z., & Bilal Waqar, A.
Oncogenic Role of Tumor Viruses in Humans. Viral Immunology. 2017; 30(1), 20–27. Disponible en: https://doi.org/10.1089/vim.2016.0109
5. Epstein, M. A., Achong, B. G., & Barr, Y. M. Virus Particles in Cultured Lymphoblasts From Burkitt’S Lymphoma. The Lancet. 1964; 283(7335), 702–703. Disponible en: https://doi.org/10.1016/S0140-6736(64)91524-7
6. Young, L. S., & Rickinson, A. B. Epstein-Barr virus: 40 Years on. Nature Reviews Cancer. 2004; 4(10), 757–768. Disponible en: https://doi.org/10.1038/nrc1452
7. Young, L. S., Yap, L. F., & Murray, P. G. Epstein-Barr virus: More than 50 years old and still providing surprises. Nature Reviews Cancer. 2016; 16(12), 789–802. Disponible en: https://doi.org/10.1038/nrc.2016.92
8. Mueller, N., Evans, A., Harris. N., Comstock, W., Jellum, E., Magnus, K., Orentreich, N., Polk, F., Vogelman, J. Hodgkin’s disease and Epstein Barr virus. N England Journal of Medicine 1989; 320; 689-95.
9. Young, L., Alfieri, C., Hennessey, K., Evans, H., O’Hara, C., Anderson, K., … Cohen, J. Expression of Epstein-Barr virus transformation - associated genes in tissues of patients with EBV lymphoproliferative disease. New England Journal of Medicine. 1989; 321(16), 1080–1085.
10. Grossman, L., Chang, C., Dai, J., Nikitin, P., Jima, D., Dave, S., Luftig, A. Epstein-Barr Virus Induces Adhesion Receptor CD226 (DNAM-1) Expression durinng Primary B-Cell Trasnformatios into Lymphoblastoid Cell Lines. American Society for Microbiology. mSphere
2017; 2:e00305-17. Disponible en: https://doi.org/10.1128/ mSphere.00305-17
11. Hong, G. K., Gulley, M. L., Feng, W., Delecluse, H., Holley-guthrie, E., & Kenney, S. C. EpsteinBarr Virus Lytic Infection Contributes to Lymphoproliferative Disease in a SCID Mouse Model Epstein-Barr Virus Lytic Infection Contributes to Lymphoproliferative Disease in a SCID Mouse Model. 2005; 79(22), 13993–14003. https://doi.org/10.1128/JVI.79.22.13993
12. Ma, S.-D., Hegde, S., Young, K. H., Sullivan, R., Rajesh, D., Zhou, Y., … Kenney, S. C. A New Model of Epstein-Barr Virus Infection Reveals an Important Role for Early Lytic Viral Protein Expression in the Development of Lymphomas. Journal of Virology. 2011, 85(1), 165–177. Disponible en: https://doi.org/10.1128/JVI.01512-10
13. Kang, M., & Kieff, E. Epstein – Barr virus latent genes. 2015; 47(1), e131-16. Disponible en: https://doi.org/10.1038/emm.2014.84
14. Klein, G., Klein, E., & Kashuba, E. Interaction of Epstein-Barr virus (EBV) with human Blymphocytes. Biochemical and Biophysical Research Communications. 2010; 396(1), 67–73. Disponible en: https://doi.org/10.1016/j.bbrc.2010.02.146
15. Swerdlow, S. H., Campo, E., Pileri, S. A., Harris, N. L., Stein, H., Siebert, R., … Jaffe, E. S. The 2016 revision of the World Health Organization classi fi cation of lymphoid neoplasms. Blood. 2016; 127(20), 2375–2391. Disponible eb: https://doi.org/10.1182/blood-2016-01-643569
16. Molyneux, E. M., Rochford, R., Griffin, B., Newton, R., Jackson, G., Menon, G., … Bailey, S. Burkitt’s lymphoma. The Lancet. 2012; 379(9822), 1234–1244. Disponible en:
https://doi.org/10.1016/S0140-6736(11)61177-X
17. Bornkamm, G. W. Epstein-Barr virus and the pathogenesis of Burkitt’s lymphoma: More questions than answers. International Journal of Cancer. 2009; 124(8), 1745–1755. Disponible en: https://doi.org/10.1002/ijc.24223
18. Schmitz, R., Ceribelli, M., Pittaluga, S., Wright, G., & Staudt, L. M. Oncogenic mechanisms in Burkitt lymphoma. Cold Spring Harbor Perspectives in Biology. 2014; 6(3), 1–14. Disponible en: https://doi.org/10.1101/cshperspect.a014282
19. Stavnezer, J. Complex regulation and function of activation-induced cytidine deaminase. Trends in Immunology. 2011; 32(5), 194–201. Disponible en: https://doi.org/10.1016/j.it.2011.03.003
20. Kuraoka, M., Holl, T. M., Liao, D., Womble, M., Cain, D. W., & Reynolds, A. E. Activationinduced cytidine deaminase mediates tolerance in B-cells. Pnas. 2011; 108(28), 11560–11565.
Disponible en: https://doi.org/10.1073/pnas.1102571108/-
DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1102571108

21. Shimizu, T., Marusawa, H., Endo, Y., & Chiba, T. Inflammation-mediated genomic instability: Roles of activation-induced cytidine deaminase in carcinogenesis. Cancer Science. 2012 103(7), 1201–1206. Disponible en: https://doi.org/10.1111/j.1349-7006.2012.02293.x
22. Allday, M. J. Seminars in Cancer Biology How does Epstein – Barr virus (EBV) complement the activation of Myc in the pathogenesis of Burkitt’ s lymphoma ?2009; 19, 366–376. Disponible en: https://doi.org/10.1016/j.semcancer.2009.07.007.