Nuevas aplicaciones de edición génica a la terapia celular adoptiva para el tratamiento de la leucemia mieloide aguda

Inicio>>Volumen>>Vol 27, N ° 1 enero – abril 2022>>Nuevas aplicaciones de edición génica a la terapia celular adoptiva para el tratamiento de la leucemia mieloide aguda

Nuevas aplicaciones de edición génica a la terapia celular adoptiva para el tratamiento de la leucemia mieloide aguda


Andrey Montero Bonilla


La leucemia mieloide aguda (LMA) es una malignidad con severas complicaciones en pacientes en recaída y enfermedad refractaria. Para estos, los avances en tratamiento han sido escasos en las últimas tres décadas reduciéndose en muchos casos al trasplante de células madre hematopoyéticas, sin embargo, su uso es limitado.

La terapia celular adoptiva ha presentado grandes avances para el tratamiento del cáncer. Algunos inconvenientes como el tiempo de generación del producto terapéutico y la dificultad para obtener componentes celulares adecuados posterior a la quimioterapia, han mejorado de manera acelerada con la aparición de modelos de edición génica. Estos se enfocan en editar los receptores de linfocitos T asi como algunas moléculas del complejo principal de histocompatibilidad (MHC) logrando que estas terapias sean más accesibles, seguras y estén disponibles a tiempo para los pacientes.

En esta revisión, se realiza una aproximación a los principales inconvenientes que se presentan en el tratamiento de LMA, las nuevas aproximaciones con inmunoterapia celular adoptiva y herramientas de edición génica, asi como las perspectivas futuras.

Palabras clave

CAR-T, LMA, linfocito T, trasplante de células madre, terapia génica, inmunoterapia, CD33, alogénico, CRISPR.


Acute myeloid leukemia (AML) is a malignancy with severe clinical complications in patients refractory to treatment or who develop a relapse. Advances in treatment have been limited in the last three decades, with hematopoietic stem cell transplantation as the alternative for these patients; however, not all patients are candidates for this treatment, and sometimes, its access is limited.

Adoptive cell therapy has recently emerged as a potentially curative therapy in this type of cancer, and ongoing research is showing encouraging results. Nevertheless, some issues such as the time to generate therapeutic products, and the lack of adequate cell components after chemotherapy, make this therapeutic option difficult. To overcome these obstacles, new gene editing methods, focused on T cell receptors as well as Major Histocompatibility Complex (MHC), are improving these new therapeutical options, making them safe and available for patients.

In this review, we summarize the important issues driven by AML, new potential immunotherapies, gene editing tools, and address the present and future of research in this field.

Key words

CAR-T, AML, gene therapy, T lymphocyte, stem cell transplant , immunotherapy, CD33, allogeneic, CRISPR

Texto completo



1. De Kouchkovsky I, Abdul-Hay M. ‘Acute myeloid leukemia: A comprehensive review and 2016 update.’ Blood Cancer Journal. 2016; 6(7): 2016.
2. Murati A, Brecqueville M, Devillier R, Mozziconacci MJ, Gelsi-Boyer V, Birnbaum D. Myeloid malignancies: Mutations, models and management. BMC Cancer. 2012;12.
3. Tang L, Zhang Y, Hu Y, Mei H. Hematological Malignancies. 2021; Disponible en:
4. Stadtmauer EA, Fraietta JA, Davis MM, Cohen AD, Weber KL, Lancaster E, et al. CRISPR-engineered T cells in patients with refractory cancer. Science. 2020; 367(6481).
5. Kantarjian H, Kadia T, Dinardo C, Daver N, Borthakur G, Jabbour E, et al. Acute myeloid leukemia: current progress and future directions. Blood Cancer J. 2021;11:41. Disponible en:
6. Ferguson P, Craddock C. Allogeneic transplantation in primary refractory AML. Bone Marrow Transplant. 2017;52(7):950–1. Disponible en:
7. Shlomchik WD. Graft-versus-host disease. Nat Rev Immunol. 2007;7(5):340–52.
8. Döhner, H, Weisdorf, DJ, Bloomfield CD (2015). Acute Myeloid Leukemia. N Engl J Med. 2015; 373(12):1136–1152.
9. Pei X, Huang X. New approaches in allogenic transplantation in AML. Semin Hematol. 2019; 56(2):147–54. Disponible en
10. Kim MY, Yu KR, Kenderian SS, Ruella M, Chen S, Shin TH, et al. Genetic Inactivation of CD33 in Hematopoietic Stem Cells to Enable CAR T Cell Immunotherapy for Acute Myeloid Leukemia. Cell. 2018;173(6):1439-1453.e19.
11. Kenderian S, Ruella M, Shestova O, Klichinsky M, Aikawa V, Morrissette J, et al. CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia. Leukemia. 2015; 29(8): 1637-47. Disponible en:
12. Smith-Garvin JE, Koretzky GA, Jordan MS. T cell activation. Annu Rev Immunol. 2009;27:591–619.
13. Guerriero JL. Macrophages: Their Untold Story in T Cell Activation and Function. International Review of Cell and Molecular Biology. 2019 342: 73–93. Disponible en:
14. Saline M, Rödström KEJ, Fischer G, Orekhov VY, Karlsson BG, Lindkvist-Petersson K. The structure of superantigen complexed with TCR and MHC reveals novel insights into superantigenic T cell activation. Nat Commun. 2010;1(8).
15. Piepenbrink KH, Blevins SJ, Scott DR, Baker BM. The basis for limited specificity and MHC restriction in a T cell receptor interface. Nat Commun. 2013;4:1–9.
16. Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci. 1989;86(24):10024–8.
17. Almåsbak H, Aarvak T, Vemuri MC. CAR T Cell Therapy: A Game Changer in Cancer Treatment. J Immunol Res. 2016; 2016.
18. Hinrichs CS, Rosenberg SA. Exploiting the curative potential of adoptive T-cell therapy for cancer. Immunol Rev. 2014; 257 (1): 56-71.
19. Larson RC, Maus M V. Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nat Rev Cancer. 2021;21(3):145–61. Disponible en:
20. Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021;11(4). Disponible en:
21. Malissen B. CAR T cells: from tinkering to rational design. Cell Res. 2020;30(11):948–9. Disponible en:
22. Srivastava S, Riddell SR. Engineering CAR-T cells: Design concepts. Trends Immunol. 2015; 36(8):494–502. Disponible en:
23. Xu D, Jin G, Chai D, Zhou X, Gu W, Chong Y, et al. The development of CAR design for tumor CAR-T cell therapy. Oncotarget. 2018;9(17):13991–4004.
24. Caldwell KJ, Gottschalk S, Talleur AC. Allogeneic CAR Cell Therapy—More Than a Pipe Dream. Front Immunol. 2021;11(January):1–12.
25. Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N Engl J Med. 2017;377(26):2531–44.
26. Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N Engl J Med. 2018;378(5):439–48.
27. Raje N, Berdeja J, Lin Y, Siegel D, Jagannath S, Madduri D, et al. Anti-BCMA CAR T-Cell Therapy bb2121 in Relapsed or Refractory Multiple Myeloma. N Engl J Med. 2019; 380(18):1726–37.
28. Wang M, Munoz J, Goy A, Locke FL, Jacobson CA, Hill BT, et al. KTE-X19 CAR T-Cell Therapy in Relapsed or Refractory Mantle-Cell Lymphoma. N Engl J Med. 2020;382(14):1331–42.
29. Ramos CA, Grover NS, Beaven AW, Lulla PD, Wu MF, Ivanova A, et al. Anti-CD30 CAR-T Cell Therapy in Relapsed and Refractory Hodgkin Lymphoma. J Clin Oncol. 2020;38(32):3794–804.
30. Hay AE, Cheung MC. CAR T-cells: costs, comparisons, and commentary. J Med Econ. 2019;22(7):613–5. Disponible en:
31. Lyman GH, Nguyen A, Snyder S, Gitlin M, Chung KC. Economic Evaluation of Chimeric Antigen Receptor T-Cell Therapy by Site of Care among Patients with Relapsed or Refractory Large B-Cell Lymphoma. JAMA. 2020;3(4):1–14.
32. Thommen DS, Schumacher TN. T Cell Dysfunction in Cancer. Cancer Cell. 2018;33(4):547–62. Disponible en:
33. Köhl U, Arsenieva S, Holzinger A, Abken H. CAR T Cells in Trials: Recent Achievements and Challenges that Remain in the Production of Modified T Cells for Clinical Applications. Hum Gene Ther. 2018;29(5):559–68.
34. Depil S, Duchateau P, Grupp SA, Mufti G, Poirot L. ‘Off-the-shelf’ allogeneic CAR T cells: development and challenges. Nat Rev Drug Discov. 2020;19(3):185–99. Disponible en:
35. Paolo Tambaro F, Singh H, Jones E, Rytting M, Mahadeo KM, Thompson P, et al. Autologous CD33-CAR-T cells for treatment of relapsed/refractory acute myelogenous leukemia. Leukemia. 2021; 35(11): 3282-86. Disponible en:
36. Wang Q, Wang Y, Lv H, Han Q, Fan H, Guo B, et al. Treatment of CD33-directed Chimeric Antigen Receptor-modified T Cells in One Patient With Relapsed and Refractory Acute Myeloid Leukemia. Mol Ther. 2014;23:184–91. Disponible en:
37. Marcus A, Eshhar Z. Allogeneic chimeric antigen receptor-modified cells for adoptive cell therapy of cancer. Expert Opin Biol Ther. 2014;14(7):947–54.
38. Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res. 2017;23(9):2255–66.
39. Graham C, Jozwik A, Pepper A, Benjamin R. Allogeneic car-t cells: More than ease of access? Cells. 2018;7(10):1-11.
40. Li C, Mei H, Hu Y. Applications and explorations of CRISPR/Cas9 in CAR T-cell therapy. Brief Funct Genomics. 2020;19(3):175–82.
41. Scholefield J, Harrison PT. Prime editing – an update on the field. Gene Ther. 2021;28(7–8):396–401.
42. Qasim W. Allogeneic CAR T cell therapies for leukemia. Am J Hematol. 2019 ;94(S1):S50–4. Disponible en:
43. Kamiya T, Wong D, Png YT, Campana D. A novel method to generate T-cell receptor-deficient chimeric antigen receptor T cells. Blood Adv. 2018;2(5):517–28.
44. Liu X, Zhao Y. CRISPR/Cas9 genome editing: Fueling the revolution in cancer immunotherapy. Curr Res Transl Med. 2018;66(2):39–42. Disponible en:
45. Ren J, Zhang X, Liu X, Fang C, Jiang S, June CH, et al. A versatile system for rapid multiplex genome-edited CAR T cell generation. Oncotarget. 2017;8(10):17002–11.
46. Bhatkar D, Sarode SC, Sarode GS, Patil S, Sharma NK. CRISPR-Cas genome editing tool: A narrow lane of cancer therapeutics with potential blockades. Transl Cancer Res. 2020;9(4):3135–41.
47. Wu HY, Cao CY. The application of CRISPR-Cas9 genome editing tool in cancer immunotherapy. Brief Funct Genomics. 2019;18(2):129–32.
48. Hazafa A, Mumtaz M, Fras M, Bilal S, Nasir S, Firdous M, et al. CRISPR/Cas 9: A powerful genome editing technique for the treatment of cancer cells with present challenges and future directions. Life Sci. 2020; 263: 118525.
49. Salas-Mckee J, Kong W, Gladney WL, Jadlowsky JK, Plesa G, Davis MM, et al. CRISPR/Cas9-based genome editing in the era of CAR T cell immunotherapy. Hum Vaccines Immunother. 2019;15(5):1126–32. Disponible en:
50. Mollanoori H, Shahraki H, Rahmati Y, Teimourian S. CRISPR/Cas9 and CAR-T cell, collaboration of two revolutionary technologies in cancer immunotherapy, an instruction for successful cancer treatment. Hum Immunol. 2018;79(12):876–82. Disponible en:
51. Hu K jia, Yin ETS, Hu Y xian, Huang H. Combination of CRISPR/Cas9 System and CAR-T Cell Therapy: A New Era for Refractory and Relapsed Hematological Malignancies. Curr Med Sci. 2021;41(3):420–30.
52. Yang Y, Jacoby E, Fry TJ. Challenges and opportunities of allogeneic donorderived CAR T cells. Curr Opin Hematol. 2015;22(6):509–15.
53. Gao Q, Dong X, Xu Q, Zhu L, Wang F, Hou Y, et al. Therapeutic potential of CRISPR/Cas9 gene editing in engineered T-cell therapy. Cancer Med. 2019;8(9):4254–64.
54. Liu E, Marin D, Banerjee P, Macapinlac HA, Thompson P, Basar R, et al. Use of CAR-Transduced Natural Killer Cells in CD19-Positive Lymphoid Tumors. N Engl J Med. 2020;382(6):545–53.
55. Robillard N, Wuillème S, Lodé L, Magrangeas F, Minvielle S, Avet-Loiseau H. CD33 is expressed on plasma cells of a significant number of myeloma patients, and may represent a therapeutic target. Leukemia. 2005;19(11):2021–2.
56. Jaskova K, Pavlovicova M, Jurkovicova D. Electrophysiological variability in the SH-SY5Y cellular line. Gen Physiol Biophys. 2014;31(4):375–82.
57. Xu Q, He S, Yu L. Clinical Benefits and Safety of Gemtuzumab Ozogamicin in Treating Acute Myeloid Leukemia in Various Subgroups: An Updated Systematic Review, Meta-Analysis, and Network Meta-Analysis. Front Immunol. 2021;12:1-14.
58. Wang QS, Wang Y, Lv HY, Han QW, Fan H, Guo B, et al. Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia. Mol Ther. 2015;23(1):184–91.
59. Rafiq S, Purdon TJ, Schultz LM, Brentjens RJ. CD33-Directed Chimeric Antigen Receptor (CAR) T Cells for the Treatment of Acute Myeloid Leukemia (AML). Blood. 2016; 128(22):2825. Disponible en:
60. Song D, Swartz MH, Biesecker SG, Borda F, Shah RR, Emtage P, et al. Chimeric Antigen Receptor-Modified T Cells for the Treatment of Acute Myeloid Leukemia Expressing CD33. Blood. 2016; 128(22):4058. Disponible en:
61. O’Hear CE, Heiber J, Geiger TL. Anti-CD33 Chimeric Antigen Receptor Therapy For Acute Myeloid Leukemia. Blood . 2013;122(21):1441. Disponible en:
62. Charrot S, Hallam S, Hallam CS. CAR-T Cells : Future Perspectives. Hemasphere. 2019; 3(2).
63. McHayleh W, Bedi P, Sehgal R, Solh M. Chimeric antigen receptor T-cells: The future is now. J Clin Med. 2019;8(2):3–5.
64. Miao L, Zhang Z, Ren Z, Li Y. Reactions Related to CAR-T Cell Therapy. Front Immunol. 2021;12(April).
65. Ruella M, Maus M V. Catch me if you can: Leukemia Escape after CD19-Directed T Cell Immunotherapies. Comput Struct Biotechnol J . 2016;14:357–62. Disponible en;
66. Xu J, Wang Y, Shi J, Liu J, Li Q, Chen L. Combination therapy: A feasibility strategy for car-t cell therapy in the treatment of solid tumors (review). Oncol Lett. 2018;16(2):2063–70.
67. Srivastava S, Furlan SN, Jaeger-Ruckstuhl CA, Sarvothama M, Berger C, Smythe KS, et al. Immunogenic Chemotherapy Enhances Recruitment of CAR-T Cells to Lung Tumors and Improves Antitumor Efficacy when Combined with Checkpoint Blockade. Cancer Cell. 2021;39(2):193-208.e10. Disponible en: