Desarrollo de un método para la detección de glucurónidos de esteroides anabólicos androgénicos en orina humana en lugares de trabajo mediante cromatografía líquida acoplada a espectrometría de masas de alta resolución

Inicio>>Volumen>>Vol 26, N ° 1 enero – abril 2021>>Desarrollo de un método para la detección de glucurónidos de esteroides anabólicos androgénicos en orina humana en lugares de trabajo mediante cromatografía líquida acoplada a espectrometría de masas de alta resolución

Desarrollo de un método para la detección de glucurónidos de esteroides anabólicos androgénicos en orina humana en lugares de trabajo mediante cromatografía líquida acoplada a espectrometría de masas de alta resolución


José Rangel-Hasbún, Tania Garro-Vargas


El interés por detectar la presencia del consumo de esteroides anabólicos androgénicos en lugares de trabajo ha aumentado en la última década. Para satisfacer esta demanda, se desarrolló un método rápido y sencillo para la detección de glucurónidos de tres esteroides anabólicos androgénicos en orina utilizando una preparación de muestra basada en el método «dilute and shoot» y un análisis mediante cromatografía líquida acoplada a espectrometría de masas, por lo que el método se podría implementar en laboratorios de alto volumen. El método fue desarrollado para la detección del uso activo de esteroides anabólicos androgénicos; se utilizó un punto de corte de 50 ng/ml para los tres compuestos estudiados. Se logró demostrar una buena linealidad (r2>0.99) para todos los compuestos, pero con un rango lineal corto (10–100 ng/ml). Los límites de detección se encontraron entre el intervalo de 2–10 ng/ml, con una reproducibilidad en el punto de corte inferior a 16% para todos los compuestos. A pesar de que se contó con una cantidad limitada de patrones disponibles, las propiedades de la espectrometría de masas de alta resolución y masa exacta permitió la detección de compuestos que son isobáricos con varios glucurónidos y agliconas de esteroides anabólicos androgénicos en muestras confirmadas positivas, lo cual sugiere que el método podría tener un rango de aplicación más amplio.

Palabras clave

Esteroides anabólicos androgénicos, glucurónidos, toxicología laboral, espectrometría de masas.


The interest in testing for the presence of anabolic-androgenic steroids in the workplace has been on the rise. The development of a fast and simple “dilute and shoot” method for the direct detection of the glucuronides of 3 anabolic-androgenic steroids in urine by liquid chromatography-mass spectrometry, which can be implemented in high throughput laboratories, is described. The method focuses on the detection of active use of anabolic-androgenic steroids, using a 50 ng/mL cut-off for the three compounds. All analytes demonstrated good linearity (r2 > 0.99), albeit with a narrow linear range (10 – 100 ng/mL). Limits of detection were between 2 – 10 ng/mL, with reproducibility at the cut-off lower than 16 % for all compounds. Although the number of standards available was limited, the use of high resolution-accurate mass mass spectrometry allowed the detection of compounds that are isobaric to various anabolic-androgenic steroid glucuronides and aglycones in confirmed positive urine samples, suggesting a wider applicability for the method.

Key words

Anabolic-androgenic steroids, glucuronides, toxicology, chromatography-mass spectrometry.

Texto completo



1. Harris D, Lucy C. Quantitative chemical analysis. 10th ed. New York: Freeman Custom Publishing; 2019.
2. Uttam G, Hammett-Stabler C. Clinical applications of mass spectrometry: methods and protocols. New York, N.Y: Humana Press; 2010.
3. Kicman AT. Pharmacology of anabolic steroids. Br J Pharmacol. 2008;154(3):502–21.
4. Bhasin S, Storer TW, Berman N, Callegari C, Clevenger B, Phillips J, et al. The effects of supraphysiologic doses of testosterone on muscle size and strength in normal men. N Engl J Med. 1996; 335(1):1–7.
5. Bhasin S, Woodhouse L, Casaburi R, Singh AB, Bhasin D, Berman N, et al. Testosterone dose-response relationships in healthy young men. Am J Physiol Endocrinol Metab. 2001; 281(6):1172–81.
6. Melchert RB, Welder AA. Cardiovascular effects of androgenic-anabolic steroids. Med Sci Sports Exerc. 1995; 27(9):1252–62.
7. See KL, See M, Gluud C. Liver pathology associated with the use of anabolic-androgenic steroids. Liver. 1992; 12(2):73–9.
8. Bronson FH. Effects of prolonged exposure to anabolic steroids on the behavior of male and female mice. Pharmacol Biochem Behav. 1996; 53(2):329–34.
9. Kanayama G, Kean J, Hudson JI, Pope HG. Cognitive deficits in long-term anabolic-androgenic steroid users. Drug Alcohol Depend. 2013; 130(1-3):208–14.
10. Kanayama G, Hudson JI, Pope HG. Long-term psychiatric and medical consequences of anabolic-androgenic steroid abuse: a looming public health concern? Drug Alcohol Depend. 2008; 98(1-2):1–12.
11. Parkinson AB, Evans NA. Anabolic androgenic steroids: a survey of 500 users. Med Sci Sports Exerc. 2006;38(4): 644–51.
12. Penning R, Veldstra JL, Daamen AP, Olivier B, Verster JC. Drugs of abuse, driving and traffic safety. Curr Drug Abuse Rev. 2010; 3(1):23–32.
13. Humphrey KR, Decker KP, Goldberg L, Pope HG, Gutman J, Green G. Anabolic Steroid Use and Abuse by Police Officers: Policy and Prevention. Police Chief. 2008; 75(6):66.
14. Honour JW. Mass spectrometry for steroids. Ann Clin Biochem. 2014;51(Pt 3): 309–11.
15. Schänzer W. Metabolism of anabolic androgenic steroids. Clin Chem. 1996 Jul; 42(7):1001–20.
16. Badoud F, Grata E, Perrenoud L, Avois L, Saugy M, Rudaz S, et al. Fast analysis of doping agents in urine by ultra-high-pressure liquid chromatography-quadrupole time-of-flight mass spectrometry I. Screening analysis. J Chromatogr A. 2009;1216(20):4423–33.
17. Balcells G, Pozo OJ, Esquivel A, Kotronoulas A, Joglar J, Segura J, et al. Screening for anabolic steroids in sports: Analytical strategy based on the detection of phase I and phase II intact urinary metabolites by liquid chromatography tandem mass spectrometry. J Chromatogr A. 2015;1389:65–75.
18. Hauser B, Schulz D, Boesch C, Deschner T. Measuring urinary testosterone levels of the great apes-problems with enzymatic hydrolysis using Helix pomatia juice. Gen Comp Endocrinol. 2008;158(1):77–86.
19. Jeon BW, Yoo HH, Jeong ES, Kim HJ, Jin C, Kim DH, et al. LC-ESI/MS/MS method for rapid screening and confirmation of 44 exogenous anabolic steroids in human urine. Anal Bioanal Chem. 2011; 401(4):1353–63.
20. Pozo OJ, Van Eenoo P, Deventer K, Delbeke FT. Development and validation of a qualitative screening method for the detection of exogenous anabolic steroids in urine by liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2007;389(4):1209–24.
21. Pozo OJ, Van Eenoo P, Van Thuyne W, Deventer K, Delbeke FT. Direct quantification of steroid glucuronides in human urine by liquid chromatography–electrospray tandem mass spectrometry. J Chromatogr A. 2008;1183(1-2):108–18.
22. Tudela E, Deventer K, Van Eenoo P. Sensitive detection of 3’-hydroxy-stanozolol glucuronide by liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2013;1292:195–200.
23. Watson JT, Sparkman OD. Introduction to Mass Spectrometry: Instrumentation, Applications and Strategies for Data Interpretation. 4th ed. West Sussex: John Wiley & Sons, Ltd; 2007.
24. Tudela E, Deventer K, Geldof L, Van Eenoo P. Urinary detection of conjugated and unconjugated anabolic steroids by dilute-and-shoot liquid chromatography-high resolution mass spectrometry. Drug Test Anal. 2015; 7(2):95–108.
25. Hintikka L, Kuuranne T, Leinonen A, Thevis M, Schänzer W, Halket J, et al. Liquid chromatographic-mass spectrometric analysis of glucuronide-conjugated anabolic steroid metabolites: method validation and interlaboratory comparison. J Mass Spectrom. 2008; 43(7):965–73.
26. World Anti-Doping Agency. Minimum required performance levels for detection and identification of non-threshold substances. Disponible en: 2019. Accedido 03/07/2020.
27. Cho S-H, Lee J, Choi MH, Lee W-Y, Chung BC. Determination of urinary androgen glucuronides by capillary electrophoresis with electrospray tandem mass spectrometry. Biomed Chromatogr. 2009; 23(4):426–33.
28. Moon J-Y, Kwon W, Suh S, Cheong JC, In MK, Chung BC, et al. Reference ranges for urinary levels of testosterone and epitestosterone, which may reveal gonadal function, in a Korean male population. J Steroid Biochem Mol Biol. 2014;140:100–5.
29. Borts DJ, Bowers LD. Direct measurement of urinary testosterone and epitestosterone conjugates using high-performance liquid chromatography/tandem mass spectrometry. J Mass Spectrom. 2000; 35(1):50–61.
30. Baume N, Avois L, Schweizer C, Cardis C, Dvorak J, Cauderay M, et al. [13C]Nandrolone excretion in trained athletes: interindividual variability in metabolism. Clin Chem. 2004; 50(2):355–64.
31. Choo H-YP, Kwon O-S, Park J. Quantitative Determination of Stanozolol and Its Metabolite in Urine by Gas Chromatography/Mass Spectrometry. J Anal Toxicol. 1990;14(2):109–12.
32. Le Bizec B, Bryand F, Gaudin I, Monteau F, Poulain F, Andre F. Endogenous nandrolone metabolites in human urine: preliminary results to discriminate between endogenous and exogenous origin. Steroids. 2002; 67(2):105–10.
33. Schänzer W, Opfermann G, Donike M. Metabolism of stanozolol: Identification and synthesis of urinary metabolites. J Steroid Biochem. 1990; 36(1-2):153–74.
34. Deventer K, Pozo OJ, Verstraete AG, Van Eenoo P. Dilute-and-shoot-liquid chromatography-mass spectrometry for urine analysis in doping control and analytical toxicology. TrAC Trends Anal Chem. 2014;55:1–13.
35. Schänzer W, Guddat S, Thomas A, Opfermann G, Geyer H, Thevis M. Expanding analytical possibilities concerning the detection of stanozolol misuse by means of high resolution/high accuracy mass spectrometric detection of stanozolol glucuronides in human sports drug testing. Drug Test Anal. 2013; 5(11-12):810–8.