Células linfoides innatas: actualización de avances en inmunología

Inicio>>Volumen>>Vol 26, N ° 2 mayo – agosto 2021>>Células linfoides innatas: actualización de avances en inmunología

Células linfoides innatas: actualización de avances en inmunología


Autores


Alejandro Ulloa-Morales, Yadel Centeno-Ureña

Resumen


Las células linfoides innatas (CLIs) son un nuevo grupo de células inmunes definidas por la falta de receptores antígeno-específicos y la ausencia de selección clonal al ser estimuladas. Como respuesta a señales tisulares, las CLIs producen citoquinas que dirigen la respuesta inmune adaptativa de forma específica al tipo de lesión. Actualmente, las CLIs son clasificadas en tres grupos según su fenotipo y funciones. A pesar de que aún no se conocen claramente las interacciones entre el microambiente tisular y el papel que desempeñan las CLIs en la regulación de los tejidos grasos y la termogénesis, el conocimiento generado por su estudio puede resultar en nuevas opciones terapéuticas para la regulación y optimización de las respuestas inmunes.

Palabras clave

Células linfoides innatas, citoquinas, respuesta innata, respuesta adaptativa, termogénesis

Abstract


Innate lymphoid cells (ILCs) are a new group of immune cells defined by the lack of antigen-specific receptors and the absence of clonal selection when stimulated. In response to tissue signals, ILCs produce cytokines that target the adaptive immune response specifically to the type of injury. ILCs are currently classified into three groups according to their phenotype and functions. Although the interactions between the tissue microenvironment and the role that CLIs play in the regulation of fatty tissues and thermogenesis are still not clear, the knowledge generated by their study may result in new therapeutic options for the regulation and optimization of immune responses.


Key words

Innate lymphoid cells, cytokines, innate response, adaptive response, thermogenesis

Texto completo

VER PDF



Referencias

1. Eberl G, Colonna M, Di Santo JP, McKenzie, AN. Innate lymphoid cells. Innate lymphoid cells: a new paradigm in immunology. Science. 2015; 348(6237), aaa6566.
2. Bénézech C, Jackson-Jones, LH. ILC2 Orchestration of Local Immune Function in Adipose Tissue. Frontiers in immunology. 2008; 10 (171).
3. Klose C, Flach M, Möhle L, Rogell L, Hoyler T, Ebert K, et al. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell. 2014; 157(2), 340–356.
4. Constantinides MG, McDonald BD, Verhoef PA, Bendelac A. A committed precursor to innate lymphoid cells. Nature. 2014; 508(7496), 397–401.
5. Wong SH, Walker JA, Jolin HE, Drynan LF, Hams E, Camelo A, et al. Transcription factor RORα is critical for nuocyte development. Nature immunology. 2012; 13(3), 229–236.
6. Cherrier M, Sawa S, Eberl G. Notch, Id2, and RORγt sequentially orchestrate the fetal development of lymphoid tissue inducer cells. The Journal of experimental medicine. 2012; 209(4), 729–740.
7. Geiger TL, Abt MC, Gasteiger G, Firth MA, O'Connor MH, Geary CD, et al. Nfil3 is crucial for development of innate lymphoid cells and host protection against intestinal pathogens. The Journal of experimental medicine. 2012; 211(9), 1723–1731.
8. Serafini N, Klein Wolterink RG, Satoh-Takayama, N, Xu W, Vosshenrich, CA, Hendriks RW, et al. Gata3 drives development of RORγt+ group 3 innate lymphoid cells. The Journal of experimental medicine. 2014; 211(2), 199–208.
9. Yokota Y, Mansouri A, Mori S, Sugawara S, Adachi S, Nishikawa S, et al. Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature. 1999; 397(6721), 702–706.
10. Trabanelli S, Gomez-Cadena A, Salomé B, Michaud K, Mavilio D, Landis BN, et al. Human innate lymphoid cells (ILCs): Toward a uniform immune-phenotyping. Cytometry. Part B, Clinical cytometry. 2018; 94(3), 392–399.
11. Spencer SP, Wilhelm C, Yang Q, Hall JA, Bouladoux N, Boyd A, et al. Adaptation of innate lymphoid cells to a micronutrient deficiency promotes type 2 barrier immunity. Science. 2014; 343(6169), 432–437.
12. Van de Pavert SA, Ferreira M, Domingues RG, Ribeiro H, Molenaar R, Moreira-Santos L, et al. Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity. Nature. 2014; 508(7494), 123–127.
13. Li S, Bostick JW, Zhou L. Regulation of Innate Lymphoid Cells by Aryl Hydrocarbon Receptor. Frontiers in immunology. 2018; 8, 1909.
14. Mebius RE, Rennert P, Weissman IL. Developing lymph nodes collect CD4+CD3- LTbeta+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity. 1997; 7(4), 493–504.
15. Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, et al. Innate lymphoid cells--a proposal for uniform nomenclature. Nature reviews. Immunology. 2013; 13(2), 145–149.
16. Miller D, Motomura K, Garcia-Flores V, Romero R, Gomez-Lopez N. Innate Lymphoid Cells in the Maternal and Fetal Compartments. Frontiers in immunology. 2018; 9, 2396.
17. Cortez VS, Colonna M. Diversity and function of group 1 innate lymphoid cells. Immunology letters. 2016; 179, 19-24.
18. Ivanova DL, Denton SL, Fettel KD, Sondgeroth, KS, Munoz Gutierre J, Bangoura B, et al. Innate Lymphoid Cells in Protection, Pathology, and Adaptive Immunity During Apicomplexan Infection. Frontiers in immunology. 2019; 10, 196.
19. Adachi S, Yoshida H, Kataoka H, Nishikawa S. Three distinctive steps in Peyer's patch formation of murine embryo. International immunology. 1997; 9(4), 507–514.
20. Zhong C, Zheng M, Zhu J. Lymphoid tissue inducer-A divergent member of the ILC family. Cytokine & growth factor reviews. 2018; 42, 5–12.
21. Bagadia P, Huang X, Liu TT, Murphy KM. Shared Transcriptional Control of Innate Lymphoid Cell and Dendritic Cell Development. Annual review of cell and developmental biology. 2019; 35, 381–406.
22. Sojka DK, Plougastel-Douglas B, Yang L, Pak-Wittel MA, Artyomov MN, Ivanova Y, et al. Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells. eLife. 2014; 3, e01659.
23. Artis D, Spits H. The biology of innate lymphoid cells. Nature. 2015; 517(7534), 293–301.
24. Serafini N, Vosshenrich CA, Di Santo, JP. Transcriptional regulation of innate lymphoid cell fate. Nature reviews. Immunology. 2015; 15(7), 415–428.
25. Weizman OE, Adams NM, Schuster IS, Krishna C, Pritykin Y, Lau C, et al. ILC1 Confer Early Host Protection at Initial Sites of Viral Infection. Cell. 2017; 171(4), 795–808.e12.
26. Zhu J, Jankovic D, Oler AJ, Wei G, Sharma S, Hu G, et al. The transcription factor T-bet is induced by multiple pathways and prevents an endogenous Th2 cell program during Th1 cell responses. Immunity 2012; 37(4), 660–673.
27. O'Sullivan TE, Rapp M, Fan X, Weizman OE, Bhardwaj P, Adams NM, et al. Adipose-Resident Group 1 Innate Lymphoid Cells Promote Obesity-Associated Insulin Resistance. Immunity. 2016; 45(2), 428–441.
28. Von Moltke J, Locksley RM. I-L-C-2 it: type 2 immunity and group 2 innate lymphoid cells in homeostasis. Current opinion in immunology. 2014; 31, 58–65.
29. Yagi R, Zhu J, Paul WE. An updated view on transcription factor GATA3-mediated regulation of Th1 and Th2 cell differentiation. International immunology. 20111; 23(7), 415–420.
30. Yagi R, Zhong C, Northrup DL. The transcription factor GATA3 is critical for the development of all IL-7Rα-expressing innate lymphoid cells. Immunity. 2014; 40(3):378‐388.
31. Killig M, Glatzer T, Romagnani C. Recognition strategies of group 3 innate lymphoid cells. Frontiers in immunology. 2014; 5, 142.
32. Park,JH, Eberl G. Type 3 regulatory T cells at the interface of symbiosis. Journal of microbiology (Seoul, Korea). 2018; 56(3), 163–171.
33. Melo-Gonzalez F, Hepworth MR. Functional and phenotypic heterogeneity of group 3 innate lymphoid cells. Immunology. 2017; 150(3), 265–275.
34. Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F, Mazzinghi B, et al. Phenotypic and functional features of human Th17 cells. The Journal of experimental medicine. 2007; 204(8), 1849–1861.
35. Raza A, Yousaf W, Giannella R, Shata MT. Th17 cells: interactions with predisposing factors in the immunopathogenesis of inflammatory bowel disease. Expert review of clinical immunology. 2012; 8(2), 161–168.
36. Forkel M, Mjösberg J. Dysregulation of Group 3 Innate Lymphoid Cells in the Pathogenesis of Inflammatory Bowel Disease. Current allergy and asthma reports. 2016, 16 (10), 73.
37. Ruiz-Sánchez BP, Cruz-Zárate D, Estrada-García I, Wong-Baeza I. Las células linfoides innatas y su papel en la regulación de la respuesta inmune [Innate lymphoid cells and their role in immune response regulation]. Revista alergia Mexico. 2017; 64 (3), 347–363.
38. Eken A, Yetkin MF, Vural A, Okus FZ, Erdem S, Azizoglu Z, et al. Fingolimod Alters Tissue Distribution and Cytokine Production of Human and Murine Innate Lymphoid Cells. Frontiers in immunology. 2019; 10, 217.
39. Robinette M, Fuchs A, Cortez VS, Lee JS, Wang Y, Durum SK, et al. Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets. Nature immunology. 2015; 16(3), 306–317.
40. Lim AI, Verrier T, Vosshenrich CA, Di Santo JP. Developmental options and functional plasticity of innate lymphoid cells. Current opinion in immunology 2017; 44, 61–68.
41. Bal SM, Bernink JH, Nagasawa M, Groot J, Shikhagaie MM, Golebski K, et al. IL-1β, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs. Nature immunology. 2016; 17(6), 636–645.
42. Ohne Y, Silver JS, Thompson-Snipes L, Collet MA, Blanck JP, Cantarel B, et al. IL-1 is a critical regulator of group 2 innate lymphoid cell function and plasticity. Nature immunology 2016; 17(6), 646–655.
43. Panzer M, Sitte S, Wirth S, Drexler I, Sparwasser T, Voehringer D. Rapid in vivo conversion of effector T cells into Th2 cells during helminth infection. Journal of immunology. 2012; 188 (2), 615–623.
44. Cherrier DE, Serafini N, Di Santo JP. Innate Lymphoid Cell Development: A T Cell Perspective. Immunity. 2018; 48(6), 1091–1103.
45. Bernink JH, Krabbendam L, Germar K, de Jong E, Gronke K, Kofoed-Nielsen M, et al.Interleukin-12 and -23 Control Plasticity of CD127(+) Group 1 and Group 3 Innate Lymphoid Cells in the Intestinal Lamina Propria. Immunity. 2015; 43(1), 146–160.
46. Huang Y, Guo L, Qiu J, Chen X, Hu-Li J, Siebenlist U, et al. IL-25-responsive, lineage-negative KLRG1(hi) cells are multipotential 'inflammatory' type 2 innate lymphoid cells. Nature immunology. 2015; 16(2), 161–169.
47. Zhang K, Xu X, Pasha MA, Siebel CW, Costello A, Haczku A, et al. Cutting Edge: Notch Signaling Promotes the Plasticity of Group-2 Innate Lymphoid Cells. Journal of immunology. 2017; 198(5), 1798–1803.
48. Nussbaum JC, Van Dyken SJ, von Moltke J, Cheng LE, Mohapatra A, Molofsky AB, et al. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature. 2013; 502(7470), 245–248.
49. Qiu Y, Nguyen KD, Odegaard JI. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell. 2014; 157(6):1292‐1308.
50. Kissig M, Shapira SN, Seale P. SnapShot: Brown and Beige Adipose Thermogenesis. Cell. 2016; 166(1), 258–258.e1.
51. Fischer K, Ruiz HH, Jhu, K, Finan B, Oberlin DJ, van der Heide V, et al. Alternatively activated macrophages do not synthesize catecholamines or contribute to adipose tissue adaptive thermogenesis. Nature medicine. 2017; 23(5), 623–630.