Arbovirus en Costa Rica: ¿A qué nos enfrentamos y cuáles son los retos futuros?

Inicio>>Volumen>>Vol 24, N ° 3 setiembre – diciembre 2018>>Arbovirus en Costa Rica: ¿A qué nos enfrentamos y cuáles son los retos futuros?

Arbovirus en Costa Rica: ¿A qué nos enfrentamos y cuáles son los retos futuros?


Autores


Eugenia Corrales-Aguilar, Marta Piche-Ovares

Resumen


Los virus transmitidos por artrópodos (arbovirus) han causado enfermedades en seres humanos y animales a lo largo de la historia. En los últimos años, el riesgo de surgimiento de nuevos brotes se está viendo incrementado por factores como el cambio climático, el cambio en el uso de tierras y por una urbanización sin planificación. Estos cambios aumentan los riesgos de contacto entre los reservorios animales, además, alteran el hábitat de los vectores e influyen en cómo los hospederos accidentales, tanto humanos como animales, puedan verse afectados. Muchos de los virus aquí descritos ya han sido reportados en Costa Rica, sin embargo, el reto principal a futuro es el correcto abordaje desde todos los entes encargados de la salud humana, así como de la salud animal, para poder realizar un correcto diagnóstico y prevenir posibles brotes. Con la presente revisión, se pretende incentivar un abordaje integral de estas enfermedades que afectan tanto a humanos como a animales.

Palabras clave

arbovirus, flavivirus, alfavirus, Costa Rica

Abstract


Arthropod-borne virus (arboviruses) have caused diseases in humans and animals for a long time. In recent years, the emergence risk for new outbreaks has been increased by factors such as climate change, land use and urbanization without planning. These changes increase the risks of contact between animal reservoirs and humans, alter the habitat of vectors and influence how accidental hosts, both humans and animals, may be affected. Many of these viruses have already been reported in Costa Rica, however, the main challenge for the future is the correct approach from all entities in charge of human health, as well as animal health to make an accurate diagnosis and prevent possible outbreaks. With this review, we intend to encourage an integral approach to these arboviral diseases that can affect both humans and animals.


Key words

arbovirus, flavivirus, alphavirus, Costa Rica

Texto completo

VER PDF



Referencias

1. Vasconcelos PFC, Calisher CH. Emergence of human arboviral diseases in the Americas, 2000–2016. Vector-Borne Zoonotic Dis 2016; 16: 295–301.
2. Armstrong P, Andreadis T. Eastern equine encephalitis virus- old enemy, new threat. N Engl J Med 2013; 368: 1668–1670.
3. Hoyos-López R, Soto SU, Rúa-Uribe G, et al. Molecular identification of saint louis encephalitis virus genotype IV in Colombia. Mem Inst Oswaldo Cruz 2015; 110: 719–725.
4. De Figueiredo MLG, Figueiredo LTM. Emerging alphaviruses in the americas:
Chikungunya and mayaro. Rev Soc Bras Med Trop 2014; 47: 677–683.
5. Wesula Olivia L, Obanda V, Bucht G, et al. Global emergence of Alphaviruses that cause arthritis in humans. Infect Ecol Epidemiol 2015; 5: 29853.
6. Aréchiga-Ceballos N, Aguilar-Setién A. Alphaviral equine encephalomyelitis (Eastern, Western and Venezuelan). Rev Sci Tech 2015; 34: 491–501.
7. Mackenzie JS, Gubler DJ, Petersen LR. Emerging flaviviruses: The spread and resurgence of japanese encephalitis, west nile and dengue viruses. Nat Med 2004; 10: S98–S109.
8. Weaver SC, Charlier C, Vasilakis N, et al. Zika, Chikungunya, and Other Emerging Vector-Borne Viral Diseases. Annu Rev Med 2018; 69: 395–408.
9. Elizondo-Quiroga D, Elizondo-Quiroga A. West Nile virus and its theories, a big puzzle in Mexico and Latin America. J Glob Infect Dis 2013; 5: 168.
10. INCIENSA. Informe de vigilancia basada en laboratorio. 2018; 1–19.
11. SENASA. SENASA, http://www.senasa.go.cr/informacion/centro-de-informacion/informacion/estado-sanitario/boletines-epidemiologicos (2018).
12. Aguilar P V, Estrada-franco JG, Navarro-lopez R, et al. Hidden under the dengue umbrella. Future Virol 2011; 6: 721–740.
13. Solomon T. Flavivirus encephalitis. N Engl J Med 2004; 351: 370–8.
14. Organización Panamericana de la Salud. 100 años de salud Costa Rica Siglo XX. 2003; 322.
15. Medlin S, Deardorff ER, Hanley CS, et al. Serosurvey of selected arboviral pathogens in free-ranging, two-toed sloths (Choloepus hoffmanni) and three-toed sloths (Bradypus variegatus) in Costa Rica, 2005–07. J Wildl Dis 2016; 52: 883–892.
16. Corrales-Aguilar E, Hun-Opfer L. Nuevas perspectivas sobre la patógenesis del dengue. Acta Med Costarric 2012; 54: 75–85.
17. Corrales-Aguilar E, Soto-Garita C. El virus del zika. Rev del Col Microbiólogos y Químicos Clínicos Costa Rica 2016; 22: 2–6.
18. Mostashari F, Bunning ML, Kitsutani PT, et al. Epidemic West Nile encephalitis, New York, 1999: Results of a household-based seroepidemiological survey. Lancet 2001; 358: 261–264.
19. Murray KO, Mertens E, Desprès P. West Nile virus and its emergence in the United States of America. Vet Res 2010; 41: 1–14.
20. Lanciotti RS, Roehrig JT, Deubel V, et al. Origin of the West Nile Virus responsible for an outbreak of encephalitis in the northeastern United States. Science (80- ) 1999; 286: 2333–2337.
21. Komar N, Clark GG. West Nile virus activity in Latin America and the Caribbean. Rev Panam Salud Pública 2006; 19: 112–117.
22. Wilson AJ, Morgan ER, Booth M, et al. What is a vector? Philos Trans R Soc Lond B Biol Sci 2017; 372: 1–11.
23. Colpitts TM, Conway MJ, Montgomery RR, et al. West Nile virus: Biology, transmission, and human infection. Clin Microbiol Rev 2012; 25: 635–648.
24. Huang ZYX, de Boer WF, van Langevelde F, et al. Species’ life-history traits explain interspecific variation in reservoir competence: A possible mechanism underlying the dilution effect. PLoS One 2013; 8: 1–6.
25. Komar N, Langevin S, Hinten S, et al. Experimental infection of North American birds with the New York 1999 strain of West Nile Virus. Emerg Infect Dis J 2003; 9: 311.
26. Stiles G, Skutch A. Guía de Aves de Costa Rica. Cornell University press, 2007.
27. Morales-Betoulle ME, Komar N, Panella NA, et al. West Nile Virus ecology in a tropical ecosystem in Guatemala. Am J Trop Med Hyg 2013; 88: 116–126.
28. Hayes EB, Sejvar JJ, Zaki SR, et al. Virology, pathology, and clinical manifestations of West Nile virus disease. Emerg Infect Dis 2005; 11: 1174–1179.
29. Watson JT, Pertel PE, Jones RC, et al. Clinical characteristics and functional outcomes of West Nile fever. Ann Intern Med 2004; 141: 360–365.
30. Murray KO, Garcia MN, Rahbar MH, et al. Survival analysis, long-term outcomes, and percentage of recovery up to 8 years post-infection among the Houston West Nile virus cohort. PLoS One 2014; 9: 3–10.
31. Trock SC, Meade BJ, Glaser AL, et al. West Nile virus outbreak among horses in New York State, 1999 and 2000. Emerg Infect Dis 2001; 7: 745–747.
32. Hobson-Peters J, Arévalo C, Cheah WY, et al. Detection of antibodies to West Nile Virus in horses, Costa Rica, 2004. Vector-Borne Zoonotic Dis 2011; 11: 1081–1084.
33. SENASA. Reporte de estado de Salud Animal Sem 47, http://www.senasa.go.cr/informacion/centro-de-informacion/informacion/estado-sanitario/boletines-epidemiologicos (2009).
34. SENASA. Informe sobre caso confirmado de Virus del Oeste del Nilo en un emú en la Región Pacífico Central. Heredia, 2013.
35. Ebel GD, Dupuis AP, Nicholas D, et al. Detection by enzyme-linked immunosorbent assay of antibodies to West Nile virus in birds. Emerg Infect Dis 2002; 8: 979–982.
36. Vargas M. El mosquito un enemigo peligroso (Diptera: Culicidae). San José: Editorial Universidad de Costa Rica, 1998.
37. Leucocelaenus H, Potentially OM, With A, et al. Haemagogus Leucocelaenus and Other Mosquitoes Potentially. J Am Mosq Control Assoc 2016; 32: 329–332.
38. Vasconcelos PF da C. Yellow fever in Brazil: thoughts and hypotheses on the emergence in previously free areas. Rev Saude Publica 2010; 44: 1144–1149.
Monath TP, Vasconcelos PFC. Yellow fever. J Clin Virol 2015; 64: 160–173.
40. Beasley DWC, McAuley AJ, Bente DA. Yellow fever virus: Genetic and phenotypic diversity and implications for detection, prevention and therapy. Antiviral Res 2015; 115: 48–70.
41. Centers for Disease Control and Prevention. Transmission of Yellow Fever Vaccine Virus Through Breast-Feeding — Brazil, 2009. MMWR. Morbidity and mortality weekly report 2010; 59: 125–150.
42. Santo E, Cunha MS, Guerra JM, et al. Outbreak of Yellow Fever among nonhuman primates, Espirito Santo, Brazil, 2017. Emerg Infect Dis 2017; 23: 10–13.
43. PAHO/WHO. Epidemiological Update Yellow Fever. 2018.
44. Moreira-Soto A, Torres MC, Lima de Mendonça MC, et al. Evidence for multiple sylvatic transmission cycles during the 2016-2017 Yellow Fever virus outbreak, Brazil. Clin Microbiol Infect 2018; 24: 1019.e1-1019.e4.
45. Asamblea Legislativa de la República de Costa Rica. Alcance N ° 189. 2016.
46. Guimard T, Minjolle S, Polard E, et al. Incidence of Yellow Fever vaccine-associated neurotropic disease. Am J Trop Med Hyg 2009; 81: 1141–1143.
47. Traiber C, Amaral PC, Ritter VRF, et al. Infant meningoencephalitis probably caused by Yellow Fever vaccine virus transmitted via breastmilk. J Pediatr (Rio J) 2011; 87: 269–272.
48. Hartmann CA, Vikram HR, Seville MT, et al. Neuroinvasive St. Louis Encephalitis Virus Infection in Solid Organ Transplant Recipients. Am J Transplant 2017; 17: 2200–2206.
49. Lopez H, Neira J, Morales MA, et al. Encefalitis por virus de San Luis en la ciudad de Buenos Aires durante el brote de Dengue 2009. Med (Buenos Aires) 2010; 70: 247–250.
50. Chiu CY, Coffey LL, Murkey J, et al. Diagnosis of fatal human case of St. Louis encephalitis virus infection by metagenomic sequencing, California, 2016. Emerg Infect Dis 2017; 23: 1694–1698.
Chiu CY, Coffey LL, Murkey J, et al. Diagnosis of fatal human case of St. Louis encephalitis virus infection by metagenomic sequencing, California, 2016. Emerg Infect Dis 2017; 23: 1694–1698.
51. Borges L, Zuchi N, Serra OP, et al. Saint Louis Encephalitis Virus in Mato Grosso, Central-Western Brazil. Rev Inst Med Trop São Paulo 2015; 57: 215–220.
52. Vedovello D, Drumond BP, Marques RE, et al. First genome sequence of St. Louis encephalitis virus (SLEV) isolated from a human in Brazil. Arch Virol 2015; 160: 1189–1195.
53. Diaz LA, Ré V, Almirón WR, et al. Genotype III Saint Louis encephalitis virus outbreak, Argentina, 2005. Emerg Infect Dis 2006; 12: 1752–1754.
54. Auguste AJ, Pybus OG, Carrington CVF. Evolution and dispersal of St. Louis encephalitis virus in the Americas. Infect Genet Evol 2009; 9: 709–715.
55. Maharaj PD, Bosco-Lauth AM, Langevin SA, et al. West Nile and St. Louis encephalitis viral genetic determinants of avian host competence. PLoS Negl Trop Dis 2018; 12: 1–17.
56. Mattar S, Komar N, Young G, et al. Seroconversion for West Nile and St. Louis encephalitis viruses among sentinel horses in Colombia. Mem Inst Oswaldo Cruz 2011; 106: 976–979.
57. Centers for Disease Control and Prevention. Saint Louis Encephalitis, https://www.cdc.gov/sle/technical/epi.html.
58. Auguste AJ, Liria J, Forrester NL, et al. Evolutionary and ecological characterization of mayaro virus strains isolated during an outbreak, Venezuela, 2010. Emerg Infect Dis 2015; 21: 1742–1750.
59. Forrester NL, Wertheim JO, Dugan VG, et al. Evolution and spread of Venezuelan equine encephalitis complex alphavirus in the Americas. PLoS Negl Trop Dis 2017; 11: 1–19.
60. Arrigo NC, Adams AP, Weaver SC. Evolutionary patterns of Eastern Equine Encephalitis Virus in North versus South America suggest ecological differences and taxonomic revision. J Virol 2010; 84: 1014–1025.
61. Mun AE. Venezuelan Equine Encephalitis in a teenager. Pediatr Emerg Care 2012; 28: 372–375.
62. Taylor KG, Paessler S. Pathogenesis of Venezuelan equine encephalitis. Vet Microbiol 2013; 167: 145–150.
63. Carrara A-S, Gonzales G, Ferro C, et al. Venezuelan equine encephalitis virus infection of spiny rats. Emerg Infect Dis 2005; 11: 663–669.
64. Chapman GE, Baylis M, Archer D, et al. The challenges posed by equine arboviruses. Equine Vet J 2018; 50: 436–445.
65. Zacks M, Paessler S. Encephalitic alphaviruses. Vet Microbiol 2010; 140: 281–286.
66. Carrera JP, Bagamian KH, Travassos Da Rosa AP, et al. Human and equine infection with alphaviruses and flaviviruses in panamá during 2010: A cross-Sectional study of household contacts during an encephalitis outbreak. Am J Trop Med Hyg 2018; 98: 1798–1804.
67. SENASA. Boletín epidemiológico, Enero 2018, http://www.senasa.go.cr/informacion/centro-de-informacion/informacion/estado-sanitario/boletines-epidemiologicos.
68. Quiroz E, Aguilar P V., Cisneros J, et al. Venezuelan equine encephalitis in Panama: Fatal endemic disease and genetic diversity of etiologic viral strains. PLoS Negl Trop Dis 2009; 3: e472.
69. SENASA. Boletín epidemiológico, Julio 2018, http://www.senasa.go.cr/informacion/centro-de-informacion/informacion/estado-sanitario/boletines-epidemiologicos (2018).
Carrera J-P, Forrester N, Wang E, et al. Eastern Equine Encephalitis in Latin America. N Engl J Med 2013; 369: 732–744.
71. García M, Cisneros J, Carrera J-P, et al. Madariaga Virus Infection Associated with a Case of Acute Disseminated Encephalomyelitis. Am J Trop Med Hyg 2015; 92: 1130–1132.
72. Blohm GM, Lednicky JA, White SK, et al. Madariaga Virus: Identification of a lineage III strain in a venezuelan child with acute undifferentiated febrile illness, in the setting of a possible equine epizootic. Clin Infect Dis 2018; 67: 619–621.
73. Anderson CR, Downs WG, Wattley GH, et al. Mayaro virus: a new human disease agent. II. Isolation from blood of patients in Trinidad. Am J Trop Med Hyg 1957; 6: 1012–6.
74. Terzian ACB, Auguste AJ, Vedovello D, et al. Isolation and characterization of Mayaro virus from a human in Acre, Brazil. Am J Trop Med Hyg 2015; 92: 401–404.
75. Lednicky J, Beau De Rochars VM, Elbadry M, et al. Mayaro virus in child with acute febrile illness, Haiti, 2015. Emerg Infect Dis 2016; 22: 2000–2002.
76. Muñoz M, Navarro JC. Virus Mayaro: un arbovirus reemergente en Venezuela y Latinoamérica. Biomédica 2012; 32: 288–302.
77. Mackay IM, Arden KE. Mayaro virus: a forest virus primed for a trip to the city? Microbes Infect 2016; 18: 724–734.
78. Wiggins K, Eastmond B, Alto BW. Transmission potential of Mayaro virus in Florida Aedes aegypti and Aedes albopictus mosquitoes. Med Vet Entomol 2018; 1–7.
79. Hotez PJ, Murray KO. Dengue, West Nile virus, chikungunya, Zika—and now Mayaro? PLoS Negl Trop Dis 2017; 11: 1–5.
80. Zuchi N, Da Silva Heinen LB, Dos Santos MAM, et al. Molecular detection of Mayaro virus during a dengue outbreak in the state of Mato Grosso, Central-West Brazil. Mem Inst Oswaldo Cruz 2014; 109: 820–823.
81. da Silva Pessoa Vieira CJ, da Silva DJF, Barreto ES, et al. Detection of Mayaro virus infections during a dengue outbreak in Mato Grosso, Brazil. Acta Trop 2015; 147: 12–16.
82. Mather S, Scott S, Temperton N, et al. Current progress with serological assays for exotic emerging/re-emerging viruses. Future Virol 2013; 8: 745–755.
83. CDC. Prevention against WNV virus, https://www.cdc.gov/westnile/prevention/index.html (2018).