Aplicaciones de la citometría de flujo en microbiología de alimentos

Inicio>>Volumen>>Vol 24, N ° 3 setiembre – diciembre 2018>>Aplicaciones de la citometría de flujo en microbiología de alimentos

Aplicaciones de la citometría de flujo en microbiología de alimentos


Carolina Chaves-Ulate, Eugenia Corrales-Aguilar, María Laura Arias-Echandi, Pamela Serrano-Valerín


La citometría de flujo es una técnica muy versátil que permite, entre muchas otras aplicaciones, el análisis microbiano. El principio en el que se basa es muy simple, ya que analiza células individuales de una mezcla por medio de la dispersión de la luz o por mediciones de fluorescencia propia o adquirida.
El potencial de esta herramienta analítica ha crecido en los últimos años, lo que ha permitido la consolidación de esta como una técnica rápida, sencilla, suficientemente sensible y de fácil automatización para las crecientes necesidades de la industria alimentaria.
Con el uso de la citometría de flujo, se pueden obtener datos sobre la fisiología, morfología, genética y diversidad de microorganismos presentes en alimentos o superficies. A pesar de lo todo lo anterior, en nuestro país, muy pocos laboratorios utilizan esta técnica en sus análisis de alimentos.
Esta revisión pretende brindar al lector una visión actualizada de los avances de esta técnica y conocer sus múltiples aplicaciones, con el fin de que sea utilizada por aquellos laboratorios en los que se tengan los recursos necesarios para implementarla.

Palabras clave

Microbiología de alimentos, citometría de flujo, alimentos, microorganismos


Flow cytometry is a very versatile technique that enables among many other applications, microbial analysis. The principle on which it is based is very simple, because it analyzes individual cells of a mixture by means of the dispersion of light or by own or acquired fluorescence measurements. The potential of this analytical tool has grown in recent years allowing the consolidation of it as a fast, simple, sensitive enough technique and easy automation for the growing needs of the food industry. Using flow cytometry data on physiology, morphology, genetics and diversity of microorganisms in foods or surfaces in contact with them can be obtained. Despite all the above, in our country very few laboratories use this technique in their analysis of food.
This review aims to provide the reader with an updated overview of the progress of this technique and know the multiple applications of the same, in order to be used by those laboratories which have the resources to implement it.

Key words

Food microbiology, flow cytrometry, food, microorganisms

Texto completo



1. Ray, B y Bhunia, A. (2010) Fundamentos de microbiología de los alimentos. Cuarta edición. México. McGraw-Hill Interamericana editores. 3-7
2. Doyle, M; Beuchat, L and Montville, T. (2001) Food Microbiology. Second edition. United States of America. American Society for Microbiology. 775-778.
3. Jasson, V; Jacxsens, L; Luning, P; Rajkovic A and Uyttendaele, (2010) M. Alternative microbial methods: An overview and selection criteria. Food Microbiology. Vol. 27, 710-730
4. Laguado, J. (2007) Aplicaciones de la citometría de flujo en microbiología, veterinaria y agricultura. Revista MVZ. Córdoba. Vol. 12, N. 2, 1077-1095
5. Barrera, L; Drago, M; Pérez, J; Zamora, A; Gómez, F; Sainz T y Mendoza, F. (2004) Citometría de flujo: vínculo entre la investigación básica y la aplicación clínica. Revista Instituto Nacional de Enfermedades Respiratorias. México. Vol. 17, N. 1, 42-55.
6. Davey, H. (2002) Flow citometric techniques for the detection of microorganism. Methods in cell science. Wales, United Kingdom. Vol. 24, 91-97
7. Díaz, M; Herrero, M; García, L and Quirós, C. (2010) Application of flow cytometry to industrial microbial bioprocesses. Biochemical Engeneering Journal. Spain. Vol. 48, 385-407.
8. Subires, A. (2016) Citometria de flujo para detectar bacterias patógenas lesionadas en alimentos. Técnicas de laboratorio. N. 411, 233-238
9. Riu, J and Rius, N. (2009). Flow cytometry applications in the food industry. Journal Industrial Microbiology Biotechnology. Spain. Vol. 36, 999–1011
10. Mc Clelland, R and Pinder, (1994) A. Detection of Salmonella typhimunrum in Dairy Products with Flow Cytometry and Monoclonal Antibodies. Applied and environmental microbiology. Vol. 60, N. 12, 4255-4262
11. Wilkinson, M. (2016) Flow citometry in food microbiology: Challenges, opportunities and progress to date. Irland. Tecnicas de laboratorio. N. 422, 722-728
12. Gunasekera, T; Attfield, P and Veal, D. (2000) A flow cytometry method for rapid detection and enumeration of total bacteria in milk. Australia. Applied and environmental microbiology. Vol. 66, N. 3, 1228-1232
13. Wilkes, J; Turker, R; Montgomery, J; Cooper, W; Sutherland, J and Buzatu, D. (2012) Reduction of food matrix interference by a combination of sample preparation and multi-dimensional gating techniques to facilitate rapid, high sensitivity analysis for Escherichia coli serotype O157 by flow cytometry. United States of America. Food Microbiology. Vol. 30, 281-288.
14. López, G; Martinez, J; Aguado, M and López, V.2 (2012) Microarray Detection and Characterization of Bacterial Foodborne Pathogens. Springer Briefs in Food, Health, and Nutrition. 13-31
15. Gunasekera, T; Sørensen, A; Attfield, P; Sørensen, S and Veal, D. (2002) Inducible Gene Expression by Nonculturable Bacteria in Milk after Pasteurization. Applied and Environmental Microbiology. Vol. 68, No. 4, 1988-1993
16. Holm, C; Mathiansen, T and Jespensen, L. (2004) A flow cytometric technique for quantification and differentiation of bacteria in bulk tank milk. Journal of Applied Microbiology. Vol. 97, 935-941.
17. Flint, S; Drocourt, J; Walker, K; Stevenson; B; Dwyer, M; Clarke, I and McGill, D. (2006) A rapid, two-hour method for the enumeration of total viable bacteria in samples from commercial milk powder and whey protein concentrate powder manufacturing plants. International Dairy Journal. Vol. 16, 379-384.
18. Ramsahoi, L; Gao, A; Fabri M and Odumeru, J. (2011) Assessment of the application of an automated electronic milk analyzer for the enumeration of total bacteria in raw goat milk. Journal of Dairy Science. Vol. 94, N. 7, 3279-3287
19. Leitner, G; Merin, U; Lavi, Y; Egber, A and Silanikove, N. Aetiology of intramammary infection and its effect on milk composition in goat flocks. Journal Dairy Research. Vol. 74, 186-193
20. Donnelly, C and Baigent, G. (1986) Method for flow cytometric detection of Listeria monocytogenes in Milk. Applied and Environmental Microbiology. Vol. 52, N. 4,689-695
21. Arnesen, L; Fagerlund, A and Granum, P. (2008) From soil to gut: Bacillus cereus and its food poisoning toxins. Federation of European Microbiological Societies. Vol. 32, 579-606.
22. Boyd, A; Gunasekera, T; Attfield, P; Simic, K; Vincent, S and Veal, D. (2003) A fow-cytometric method for determination of yeast viability and cell number in a brewery. FEMS Yeast Research. Vol. 3, 11-16
23. Cahill, G; Walsh, P; and Donnelly, D. (1999) Improved control of brewery yeast pitching using image analysis. Journal American Society of Brewing Chemists. Vol. 57, 72-78
24. Bunthof, C; and Tjakko, (2002.) A. Development of a Flow Cytometric Method To Analyze Subpopulations of Bacteria in Probiotic Products and Dairy Starters. Applied and environmental microbiology. Vol. 68, N. 6, 2934–2942
25. Gandhi, A and Shan, N. (2015) Effect of salt on cell viability and membrane integrity of Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium longum as observed by flow cytometry. Food Microbiology. N. 49, 197-202
26. Oliver, G; de Giori, G; and de Valdez, G. (1988) Cheese industry development and research in Argentina. Crit. Critical Reviews in Food Science and Nutrition Vol. 26, 225 - 241.
27. Shah, N. (2000) Probiotic bacteria: selective enumeration and survival in dairy foods. Journal of Dairy Science. Vol. 83, 894-907.
28. Chen, S; Ferguson, L; Shu, Q; and Garg, S. (2011) The application of flow cytometry to the characterisation of a probiotic strain Lactobacillus reuteri DPC16 and the evaluation of sugar preservatives for its lyophilization. Food Science and Technology. Vol. 44, 1873-1879.
29. Ringot D, Chango A, Schneider YJ, Larondelle Y (2006) Toxicokinetics and toxicodynamics
30. Aqai, P; Peters, J; Gerssen, A; Haasnoot, W and Nielen, M. (2011) Immunomagnetic microbeads for screening with flow cytometry and identification with nano-liquid chromatography mass spectrometry of ochratoxins in wheat and cereal. Analytical and Bioanalytical Chemistry. Vol. 40, 3085–3096
31. Zendejas, G; Avalos, H y Soto, M. (2014) Microbiología general de Staphyloccocus aureus: Generalidades, patogenicidad y métodos de identificación. México. Rev. Biomed. Vol. 25, 129-143
32. Schenk, M; Guerrero, S; and Alzamora, S. (2008) Response of some microorganisms to ultraviolet treatment on fresh-cut pear. Food and Bioprocess Technology. Vol. 1, N. 4, 384-392.
33. Ananta, E.; Heinz, V; and Knorr, D. (2004) Assessment of high pressure induced damage on Lactobacillus rhamnosus GG by flow cytometry. Food Microbiology. Vol. 21, N. 5, 567-557
34. Schenk, M; Raffellini, S; Guerrero, S; Blanco, G and Maris, A. (2004) Inactivation of Escherichia coli, Listeria innocua and Saccharomyces cerevisiae by UV-C light: Study of cell injury by flow cytometry. Lebensmittel-Wissenschaft & Technologie - Food Science and Technology. Vol. 44, 191-198
35. Allen, M; Edberg, S and Reasoner, D. (2004) Heterotrophic plate count bacteria - what is their significance in drinking water? International Journal of Food Microbiology. Vol. 92, 265-274
36. Bartram, J; Cotruvo, J; Exner, M; Fricker, C and Glasmacher, (2003) A. Heterotrophic Plate Counts and Drinking water Safety. IWA Publishing on behalf of the World Health Organization, London.
37. Amann, R; Ludwig, W and Schleifer, K. (1995) Phylogenetic identification and in-situ detection of individual microbial cells without cultivation. Microbiological Reviews. Vol. 59,143-169
38. Dufour, A. 2003 Assessing Microbial Safety of Drinking Water: Improving Approaches and Methods, first ed. Published on Behalf of the World Health Organization and the Organisation for Economic Co-operation and Development by IWA Publishing, London.
39. Egli, T. (2008) New methods for assessing the safety of drinking water. Eawag News Vol. 65, 20-23
40. De Roy, K; Clement, L; Thas, O; Wang, Y and Boon, N. (2012) Flow cytometry for fast microbial community fingerprinting. Water research. Vol. 46, 907-919
41. Yang, L; Wu, L; Zhu, S; Long, Y; Hang, W and Yan, X. (2010) Rapid, Absolute, and Simultaneous Quantification of Specific Pathogenic Strain and Total Bacterial Cells Using an Ultrasensitive Dual-Color Flow Cytometer. Analytical Chemistry. Vol. 82, 1109-1116